i rrrn s] s

L LM I M
m | Y avava-tt 1l
nonn 1T} unn

M UEGYETEM 1782

Simon Gabor, Toth Tibor, Szab6 Gabor

1.6 - hatodik kiadas, 2023. majus

Budapesti Mliszaki és Gazdasagtudomanyi Egyetem
Villamosmérnoki és Informatikai Kar
Automatizalasi és Alkalmazott Informatikai Tanszék

1117 Budapest, Magyar tuddsok korutja 2. (Q éptilet)

https://www.bme.hu
https://www.vik.bme.hu
https://www.aut.bme.hu

Simon Gabor
simon.gabor@vik.bme.hu

Té6th Tibor
toth.tibor@vik.bme.hu

Szabo Gabor
szabo.gabor@podnet.hu

Hibajelentések, kozremiikodok
https://github.com/bmeaut/aspnetcorebook

ISBN 978-963-421-878-4

https://www.bme.hu
https://www.vik.bme.hu
https://www.aut.bme.hu
mailto:simon.gabor@vik.bme.hu
mailto:toth.tibor@vik.bme.hu
mailto:szabo.gabor@podnet.hu
https://github.com/bmeaut/aspnetcorebook

El0szo

A jegyzet célja és célkozonsége

Ezen jegyzet els6dlegesen a BME Villamosmérnoki és Informatikai Kardn oktatott Szoftverfejlesztés
NET platformra cimd targyhoz készult, célja, hogy segitséget nyujtson egyrészt a
gyakorlatvezetfnek a gyakorlat megtartasaban, masrészt a kurzus hallgatéinak a gyakorlat otthoni
utdlagos megismétléséhez, a tanult ismeretek atismétléséhez.

Ebbdl kifolydlag nem tekinthet6 egy teljesen kezdd szintli bevezetd C# tankonyvnek, hiszen
erdteljesen épit mas kari targyak (pl. Szoftvertechnikak, Adatbazisok) altal lefedett ismeretekre, de
még inkabb a Szoftverfejlesztés .NET platformra cimi targy el6adésaira.

A feltételezett el6ismeretek:

» C# és objektumorientalt nyelvi alapok
o operatorok, valtozok, tombok, strukturak, fliggvények fogalma
o operator felildefinidlas és fliggvényvaltozatok
- alapvet6 memoriakezelés (heap, stack), mutatok fogalma, érték és referencia tipusok

o alapvet6 vezérlési szerkezetek (ciklus, eldgazdas, stb.), érték- és referencia szerinti
paraméteratadas, rekurzio

o osztdly, osztdlypélddny fogalma, static, new operdtor, osztaly szintd valtozok, generikus
tipusok

o leszarmazas, virtualis tagfiggvények
o C# esemény, delegate tipusok és delegate példanyok
o Visual Studio hasznalatanak alapjai

o operdciés rendszer Kkapcsolatok, folyamatok, szdalak, parancssor, parancssori
argumentumok, kornyezeti valtozok

* SQL nyelvi alapok (SELECT, UPDATE, INSERT, DELETE utasitasok), valamint alapvet6 relacios
adatmodell ismeretek (tablak, elsédleges- és idegen kulcsok)

A fentiek elsajatitasdhoz segitséget nydjthatnak Reiter Istvan ingyenesen letolthetd konyvei.

A szovegben megtaldlhatok a gyakorlatvezet6knek szolo kitételek (,Roviden mondjuk el...",
»Mutassuk meg...", sth.). Ezeket mezei olvasoként érdemes figyelmen kivil hagyni, illetve sziikség
esetén a kapcsolddo elméleti ismereteket az el6adasanyagbdl atismételni.

A jegyzet naprakészsége

Az anyag gerincét ado .NET Core / .NET 5,6 platform jelenleg igen gyors iitemben fejlédik. A .NET
Core 1.0-s verzio oOta a készitdk torekednek a visszafelé kompatibilitdsra, azonban az eszkozkészlet
és a korszertlinek és ajanlottnak tekinthetd modszerek folyamatosan valtoznak, finomodnak.

A jegyzet els6dlegesen az alabbi technoldgiai verziokhoz késziilt:

https://www.aut.bme.hu/Course/dotnet
https://www.aut.bme.hu/Course/dotnet
https://reiteristvan.wordpress.com

C#10

.NET 6

ASP.NET Core 6

Visual Studio 2022

Ahogyan a fenti verzidk valtoznak, ugy avulhatnak el a jegyzetben mutatott eljarasok.

Szoftverkornyezet

A gyakorlatok az alabbi szoftverekbdl allo kornyezethez készultek:

* Windows 10 operacios rendszer

* Visual Studio 2022 (az ingyenes Community verzio elég) az alabbi workloadokkal:
o .NET desktop development
- Data storage and processing
o ASPNET and web development

o Azure Development

Telerik Fiddler Classic

¢ Postman

A NET (kordabban .NET Core) széleskorli platformtamogatdsa miatt bizonyos nem Windows
platformokon is elvégezhet6k a gyakorlatok Visual Studio helyett Visual Studio Code haszndlataval -
azonban a gyakorlatok szovege a Visual Studio haszndlatat feltételezi.

Kodreészletek valtozaskovetése

Az egyes gyakorlatok sordn gyakori eset, hogy a C# kdod egy részét tovabbfejlesztjik,
megvaltoztatjuk. Ilyen esetben a nem valtozo sorok a jegyzetben ures kommenttel (/**/)
kezd6dnek, mig az el6z6 verziohoz képest kikerulé kodrészletek kommentként jelennek meg. Ha
egyik eldbbi jeldlés sincs, és egyéb komment sem jelzi masként, akkor az Uj kddrészletnek szamit.

/**/using System; //ez egy korabban meglévd kddsor, valtozatlan
using static System.Console; //ez (j kodsor

/**/foreach (var dog in dogs) //ez egy korabban meglévé kodsor, valtozatlan
/* Console.*/Writeline(dog); //ez a sor megvaltozott, az elejérdl kéd torlddott
/* Console.*/ReadLine(); //ez a sor megvaltozott, az elejérdl kod torlédott

A JSON formatum alapértelmezésben (RFC szerint) nem tdmogatja a kommenteket,
A igy ha JSON kodrészletet masolunk, gy6zddjunk meg arrol, hogy nem maradt-e a
beillesztett kodban komment, mert problémat okozhat.

https://visualstudio.microsoft.com/downloads/
https://www.telerik.com/fiddler/fiddler-classic
https://www.postman.com/
https://code.visualstudio.com/

C# alapok, szintaxis

Célkitizés
A gyakorlat sordn a hallgatok elkezdenek megismerkedni a C# nyelv alapjaival, mondattanaval, a

Visual Studio fejleszt6eszkozzel. Roviden, diohéjban hasonlitsuk 0ssze mas programozasi
nyelvekkel (Java, C/C++, Python, JavaScript).

Célunk, hogy a hallgatok legaldbb részben megértsék és raérezzenek a C# szintaktikdjara,
megismerkedjenek alapvetd nyelvi elemekkel és konstrukciokkal.

Bar a f6 platformunk a késébbiekben a .NET 6 lesz, ezen a gyakorlaton még a klasszikus .NET
Framework-6t hasznaljuk.

Hello C#!

A Visual Studio inditoablakdban valasszuk a Create a new project opciot. Magyarazzuk el, hogy van
lehet8ségiink el6re gyartott sablonokbdl l1étrehozni projekteket, illetve hogy

* egy C# projekt egy szerelvénnyé fordul (.dll, .exe).
* a Solution dolga, hogy logikailag 6sszefogja a Project-eket (tobb-tobbes kapcsolatban vannak).

* a projektek kozott referencidkat adhatunk masik projektekre ugy, hogy a forditasi
mechanizmus figyelembe veszi a referencidkat és sziikség esetén ujraforditja a szerelvényeket.

* a projektek hivatkozhatnak kulsé forrasbdl szarmazd szerelvényekre is NuGet csomagok
formdjaban. A NuGet egy egységes maddszer szerelvényeink terjesztésére.

Hozzunk létre egy uj C# Console Application-t! Ehhez keressiik ki a sablonok kozil a Console App
(.NET Framework) neviit. A neve legyen HelloCSharp.

(r) A kikereséshez haszndlhatjuk felill a szovegdobozos szilirdét, illetve a legordiilé
- listas szlir6ket is (Nyelv: C#, Platform: Windows, Projekttipus: Console)

A sablon konfiguraciéjandl adjunk meg egy olyan helyet, ahova van irasi jogunk. A Place solution
and project in the same directory opciot kapcsoljuk be, igy nem fog létrejonni egy felesleges mappa a
konyvtarszerkezetben. A .NET Framework verziot allitsuk legalabb 4.7-esre.

Eszrevehetjiik, hogy az alkalmazas sablonok kozétt sima és (NET Framework) jeloléstiek is vannak.
A simdk alapvet6en a modernebb .NET Core/.NET 5,6 platformot célozzdk, a .NET Framework
ezekhez képest egy régebbi platform.

* .NET Core: a .NET Framework modularizalt, modernizalt, cross-platform és nyilt forraskodu
megvalodsitasa. Kisebb NuGet csomagokban érhetd el a teljes .NET Framework funkcionalitasa
(Collections, Reflection, XML feldolgozas, stb.).

* .NET Framework: a ,klasszikus”, teljesértékii .NET keretrendszer, out-of-the-box tdmogatja a
legelterjedtebb alkalmazasfejlesztési lehet6ségeket. A .NET Core megjelenését kovetben is
tdmogatott, enterprise kornyezetekben hasznalatos, ugyanis néhany enterprise technoldgia

els6dlegesen csak ebben tamogatott (pl. szerver oldali WCF). Csak Windows-ra telepithetd.

* .NET 5 és folotte: A .NET Core 3.1 utdni f6 verzidi. Mar elnevezésében is jelzi, hogy ez egyben a
korabbi .NET Core és .NET Framework verzioknak is utddja.

Az alabbi elemeket ismertethetjik, miel6tt a kodirdsba belekezdink:

» Rovid attekintés az IDE-rél: meniisav, Solution Explorer, Properties, Output, Error List ablakok,
ablakozdrendszer. Mutassuk meg, hogy drag-n-drop mitiveletekkel testreszabhat6 a feliilet, pl.
helyezzik a Solution Explorert a képernyd bal oldaldara. Ha valaki véletlenil atrendezi az

alapértelmezett elrendezést, a Window > Reset Window Layout lehet6séggel visszadllithatja.

* A projekt tulajdonsagok (jobb klikk > Properties) oldaldn az Application filén megnézhetjik,
hogy az Output type értéke hatarozza meg, hogy milyen jellegli (konzolos, Windows,
osztalykonyvtar) alkalmazast készitink.

* Mutassuk meg, hogy milyen alapvetd szerelvényekre adunk referenciat a projektben!
* Nézzik meg a Program.cs fajl tartalmat és fussuk at a lathato elemeket!

* Magyarazzuk el a using és namespace kulcsszavak jelentését, egymashoz képesti viszonyukat! A
névtér értéke egy ujonnan létrehozott fajlnal alapértelmezetten Projektnév.Mappaszerkezet
alaku, érdemes konvenciondlisan ezt kovetni. Sok hallgaténdl nem tiszta, hogy hogyan
viszonyul egymadshoz a névtér és a szerelvény fogalma, ezért probaljuk meg ezt tisztazni!

» Utaljunk arra, hogy alapvetfen kizarolag objektumorientaltan tudunk kodot irni, igy a Program
egy osztaly, a Main belépési pont pedig egy statikus metddus.

* Beszéljink roviden a C# elnevezési konvenciokrdl! A publikus elemeket (pl. Java-val és
JavaScripttel ellentétben) és minden metédust oOkolszabalyként PascalCasing elnevezési
konvencio kovet, a nem publikus elemeknél camelCasing (ezek kozil vannak kivételek és mas
konvenciok, de ez egy gyakori megkozelités).

Egészitsiik ki a Main metddust az aldbbi kddrészlettel, kozben hivjuk fel a figyelmet az IntelliSense
haszndlatara:

int a = 5;

int b =7;
Console.WriteLine(a + b);
Console.ReadLine();

Az IntelliSense-t demonstralhatjuk az alabbi modon:
* A Kkodban bdarmely logikus helyen haszndlhatd az IntelliSense a Ctrl + Space
billentylikombinacidval, ezen kivil alapértelmezetten felugrik kodiras kozben is.

« frjuk be a Console és a .Writeline() elemeket ugy, hogy gépelés kozben az IntelliSense
legordiil6b6l valasszuk ki az elemet, majd Tab billentytivel véglegesitsiik a valasztast.

Hasznaljuk a cw code snippetet, amit az IntelliSense is jelez, azaz irjuk be: cw majd nyomjunk
kétszer Tab -ot.

* Ha a Console.ReadlLine() helyett Console.Readline()-t irunk, els6ként az IDE azonnal javitja a
hibat. Ha ezt a javitast visszavonjuk (Ctrl + Z), lehetdségink van a javitdsra a Ctrl + .

haszndlatdval: a fejleszt6eszkoz észreveszi, hogy hibat vétettiink, és felkindlja a gyakori
megoldasokat.

* Overload-ok: jel6ljiik ki a Writeline hivds nyitd zarojelét, és irjuk be ismét a nyit6 zéréjelet. Igy
el6jon az overload-ok listaja, amik kozul a megfelel6t a f6l/le irdnybillentytikkel valaszthatjuk ki.
Az overload listat megnyithatjuk ugy is, hogy a zdrdjelben barhova irunk egy vessz6 karaktert.
Az overload azt jelenti, hogy ugyanazzal a fliggvénynévvel tobb, kiilonb6z6 szignaturaju
metodust is felvehetiink, a megfeleld fliggvény kivalasztasa a megadott paraméterek szama és
tipusa alapjan torténik.

Inditsuk el az alkalmazast! Ehhez a fent talalhato Start lehetdséget hasznalhatjuk, de mondjuk el,

hogy ez a menu Debug > Start Debugging (F5) lehetdséggel ekvivalens.

Mutassuk be a for és foreach vezérlési szerkezeteket! A projekt Properties oldalan (Alt + Enter a
projekt kijelolése utan) adjunk meg a Debug filén a Start Options blokkndl legalabb 0t tetszéleges
parancssori argumentumot (szokozzel elvalasztva), pl. kutya alma béka banan 16.

HelleCSharp® + X Program.cs

Application)) - -
Configuration: | Active (Debug]) w Platform: | Active (Any CPU) e
Build
Build Events Start action
Debug®
Rescurces
. () Start external program:
Services
Settings () Start browser with URL:
Reference Paths Start options
Signing)
. Command line arguments: kutya alma béka banan |,_:,|
Security
Publish
Code Analysis
Working directory: Browse...
[] Use remote machine

for (int i = @; 1 < args.Length; i++)
Console.WriteLine(args[i]);

foreach (string arg in args)
Console.WritelLine(arg);

Console.ReadLine();
Inditsuk el, és gyonyorkodjunk.

Debug

Rakjunk egy breakpointot (F9, vagy klikkeljink baloldalon a fliggéleges savon a kod sorszama
mellett) a Console.WritelLine(args[i]); sorra, majd inditsuk ujra az alkalmazast! Amikor a

breakpointon megall az alkalmazas futdsa, a sor sarga szind lesz. Ekkor vigyuik az egeret az i, az
args és az args.lLength elemek felé, és mutassuk meg, hogy lathatjuk az aktudlis értékeiket,
komplexebb objektumok esetén be tudjuk jarni az objektumgrafot. A Watch ablakba is irhatunk
kifejezéseket, és megmutathatjuk a Locals ablakot is. F10-zel (vagy a mentisoron a Step Over
elemmel) 1épjink tovabb, nézziik meg, milyen sorrendben értékel6dik ki a for ciklus. Az F5-tel
tovabbengedhetjik az alkalmazas futdsat, majd zarjuk is be.

Mutassuk meg a Conditional Breakpoint haszndlatat is. Tegyink még egy breakpointot a masik

Console.WritelLine-ra is. Jobb egér gomb az els6é breakpointon » Conditions..., majd adjuk meg az
alabbiakat: Conditional Expression Is true (i == 3). A masik breakpointon is adjunk meg feltételt:
Hit Count = 4. Mindkét alkalommal a 4. elemen (banan) allunk meg. Megjegyezhetjik, hogy a
Conditional Breakpoint haszndlataval nem érdemes mellékhatast okozd miiveleteket megadni,
illetve hogy jelent6sen le tudja csokkenteni a debuggolas sebességét.

Tulajdonsagok (Property-k)

Hozzuk létre a Person adatosztalyt! Ehhez jobb katt a projekten » Add » Class, a fajl neve legyen
Person (a kiterjesztést automatikusan hozzabiggyeszti a Visual Studio, ha nem adjuk meg). .NET-
ben nincs megkotés arra, hogy a kodokat tartalmazo fajlok és az egyes tipusok szamossaga hogyan
viszonyul egymashoz: lehetséges egy kodfajlba is irnunk a teljes alkalmazdas-kodot, illetve egy
osztalyt is szétdarabolhatunk tobb fajlra (ehhez a partial kulcsszét hasznaljuk).

A C# tulajdonsag (property) egy szintaktikai édesitdszer, amely egy objektumpéldany (vagy osztaly)
egy explicit (memdriabeli) vagy implicit (szarmaztatott vagy indirekt) jellemzdjét irja le. Egy
tulajdonsaggal két miivelet végezhetd: lekérdezés (get) és értékadas (set); ezeknek megadhato kilon
a lathatosaga és a kettd kozil elegendé egy implementdldsa. A legtobb C# szintaktikai édesit6szer a
boilerplate kodok irasanak elkertiilése végett késziilt, igy kevesebb kddolassal érjik el ugyanazt az
eredményt (sokszor az IL kdd nem is valtozik, gyakorlatilag hasonld a kodgeneralashoz).

A Person osztadlyban hozzuk létre a string Name property-t, name osztdlyvaltozdval (field). Ehhez
haszndljuk a propfull code snippetet (propf, majd TAB TAB, ezutdn TAB-bal lehet lépkedni a
modositando elemek kozott):

public class Person

{
private string name;
public string Name
{
get { return name; }
private set { name = value; }
}
public Person(string name)
{
this.name = name;
}
}

A Figyeljink az osztaly lathatosagara is, alapbol nem publikusként generalddik!

Magyardzzuk el, hogy igazdbdl csak két tovabbi (kodban nem lathatd) metédust hozunk létre,
mintha egy-egy GetName és SetName metddust készitenénk, viszont haszndlat szempontjabol
ugyanolyannak tlinik, mintha egy sima mez0 lenne. A settert privat lathatosagura tesszuk, ezért
csak egy Person példanyon belilrdl tudjuk allitani a Name property értékét. Jegyezzik meg, hogy a
getterben és setterben teljesen mas jellegi miveleteket is végezhetink (pl. elsiithetink egy
eseményt, hogy megvaltozott a felhasznal6 neve, naplozhatjuk, hanyszor kérték le a nevét, sth.). A
property egyik nagy erénye, hogy osztalyon kivilrél az osztalyvaltozoknal megszokott szintaxissal
hasznalhatjuk.

A Main figgvénybe irhatjuk példaul:
Person p = new Person("Eric Lippert");

p.Name = "Mads Torgersen";
Console.WriteLine(p.Name);

Debuggerrel mutassuk meg, hogy az els6 sor a konstruktort, mig a masodik a property setterét,
végul a harmadik sor ugyanazon property getterét hivja.

Mivel a backing field allitdsan kivil nem csindlunk semmit a property kédban, ezért hasznalhatjuk
a propg code snippetet is:

public string Name { get; private set; }
Ez az un. auto-implementdlt property szintaxis. A property daltal lekérdezhetd-bedllithatd field
generalddik, arra a kodban nem is tudunk hivatkozni - ez az egységbe zaras miatt el6nyos.

Alathatdsag miatt a Main fliggvénytnkben a setter hivas mar nem fordul, kommentezziik ki.
//p.Name = "Mads Torgersen";

Emlitsiik meg a prop code snippetet is, ami mindkét modositdszot publikusan hagyja. Lathatdsagi
modositoszot a get és set kozil csak az egyik elé tehetiink ki, és az is csak szigorithat a kiilsd
lathatdsdgon (ekkor a masik a kiils6t kapja meg).

Ez a megoldas az el6zdvel teljes mértékben ekvivalens (csak nem latjuk a generalt backing fieldet,
de valdjdban ott van). Ha van idénk, akkor megmutathatjuk decompilerben (pl. Telerik
JustDecompile), hogy valoban igy van.

Az el6z6hoz hasonléan vegyuk fel a sziletési datumot is. A szuletési datum nem valtozhat,
gyakorlatilag readonly mez6rdl van sz6. Ha egy tulajdonsdg értékét az objektum is csak a
konstruktorban tudja megadni, akkor a setter teljes mértékben elhagyhatd:

public DateTime DateOfBirth { get; }

https://www.telerik.com/products/decompiler.aspx
https://www.telerik.com/products/decompiler.aspx

/**/public Person(string name
, DateTime dateOfBirth
/**/)
/**/{
/**/ Name = name;
DateOfBirth = dateOfBirth;
/**/}

Ez a szintaktika megegyezik azzal, mintha egy readonly mez&t hasznalnank, azaz a mez6 értéke
legkésObb a konstruktorban inicializalando.

Vegyunk fel neki egy azonositot, ami egy Guid struktura:
public Guid Id { get; } = Guid.NewGuid();

Ez egy csak lekérdezhet6 tulajdonsag, ami konstrudlaskor inicializdlodik egy 1uj véletlenszeri
azonosito értékre.

Megadhatjuk a kort, mint implicit tulajdonsagot:
public int Age { get { return DateTime.Now.Subtract(DateOfBirth).Days / 365; } }

Mivel a fluggvényunk torzse egyetlen kifejezéssel megadhatd, ezért elhagyva a sallangot (return,
kapcsos zarojelek, sth.) expression bodied property szintaxissal is irhatjuk:

public int Age => DateTime.Now.Subtract(DateOfBirth).Days / 365;

Alkalmazasok fejlesztésekor a legfontosabb els6 lépések egyike, hogy az
(;) objektummodellink atlathatd, karbantarthaté és egyértelmi legyen. A C#
v valtozatos szintaxisa nagyon sokat segit ezen célok elérésében.

Generikus kollekcio

A Main metodusban vegyunk fel néhany Person objektumot, és listazzuk ki a relevans
tulajdonsagaikat! Ehhez egy Person listdban taroljuk a személyeket. A List generikus kollekcio, azaz
tipusparamétert var, tipusokkal paraméterezhetd. A List tipusparamétere jelzi, hogy milyen tipusu
objektumokat tarol. Met6dusok, tulajdonsagok, tipusok lehetnek generikusak. A genericitds fontos a
kodunk ujrafelhasznalhatosaga és karbantarthatdsaga érdekében.

static void Main(string[] args)

{
List<Person> people = new List<Person>();
people.Add(new Person("Horvath Aladar", new DateTime(1991, 06, 10)));
people.Add(new Person("Kovacs Istvan", new DateTime(1994, 04, 22)));
people.Add(new Person("Kovacs Géza", new DateTime(1998, 03, 16)));

foreach (Person person in people)
Console.WriteLine(person);

Console.ReadlLine();

Inditsuk el az alkalmazast, és nézzik meg, mi torténik! Annyiszor irddik ki a Person osztalyunk
teljes neve (fully qualified type name), ahany elem van a listdban.

Leszarmazas, string interpolacio

Ha a WritelLine folé vissziik az egeret, lathatd, hogy az overload-ok kozil az hivodik meg, amelyik
objektumot var paraméteril. Ebben az esetben a paraméter ToString metodusat hivja meg a
WriteLine, ami alapértelmezés szerint az objektum tipusanak teljes nevét adjak vissza. Tegyuk
szebbé a kiirdst, definidljuk felil az alapértelmezett ToString implementdaciot a Person osztalyban:

public override string ToString()

{
return string.Format("{0} ({1}) [ID: {2}]", Name, Age, Id);

}

A Person osztdlynak nincs explicit megadva 6sosztalya, mégis van felildefinidlhato fuggvénye.
Ezeket az Object osztdly definidlja. Ha egy referencia tipusnak nincs megadva 6sosztdlya, akkor az
Object lesz az.

A ToString implementaciojara mas szintaktikai édesit6szereket is hasznalhatunk:
public override string ToString() => $"{Name} ({Age}) [ID: {Id}]";

A két implementacio ekvivalens, a masodik implementacio az un. expression bodied method és a
string interpoldcio kombindalasabol adodik.

Probaljuk ki az alkalmazast!

Hozzuk létre a Student osztalyt, ami szarmazik a Person osztalybol!

public class Student : Person

{
public string Neptun { get; set; }

public string Major { get; set; }

public Student(string name, DateTime dateOfBirth)
: base(name, dateOfBirth)
{ }

10

public override string ToString() => $"{base.ToString()} Neptun: {Neptun} Major:
{Major}";
+

Ez az osztdly mdas megkozelitéssel készilt, mint a szil6je, az dallapota nem a konstruktor
meghivasakor toltédik fel, utdlag lehet megadni setter hivadsokkal. Ez egyrészt kényelmes, mert nem
kell sokparaméteres konstruktorokkal kiizdeni, masrészt fel kell készilnink arra, hogy bizonyos
adatokat nem toltenek Ki.

Ha az 6sosztdlynak nincs paraméter nélkili konstruktora (a Person osztalynak
A nincs), akkor kotelesek vagyunk a gyerek konstruktorban az 6sosztaly valamelyik
konstruktorat meghivni a base kulcsszoval.

Objektum inicializalok
Az object initializer segitségével az objektum létrehozasat (konstruktor hivas) és a property setterek
meghivasaval torténd inicializdlasat intézhetjik egy fust alatt. Az objektum inicializald csak

konstruktorhivas esetén haszndlhatd, igy pl. factory metddus altal gyartott objektumpéldany esetén
nem.

A Main metédusban irhatjuk az alabbi példat:

/**/static void Main(string[] args)

/**/{

/**/ VI

/**/ people.Add(new Person("Kovacs Géza", new DateTime(1998, 03, 16)));
Student elek = new Student("Fel Elek", new DateTime(2002, 06, 10))

{
Neptun = "ABC123",
Major = "Info BSc"
E
/¥
/**/}
(r) Paraméter nélkiuli konstruktor esetén a () is elhagyhato.
-
@ Altaldban 1-2 tulajdonsag esetén lehet egy sorba is irni az inicializaciot, t6bb
- esetén viszont altalaban toébb sorba érdemes tordelni az olvashatdsag érdekében.

Lathatjuk, hogy csak az aktualis kontextusban egyébként is lathato és beallithato tulajdonsagokat
allithatjuk be, egyik igy beallitott tulajdonsag sem kotelezd jellegt.

Az object initializer valéban csak az egyes tulajdonsdgokat allitja be, tehat csak szintaktikailag
kilonbozik az elsd definicio az alabbitdl:

Student _elek = new Student("Fel Elek", new DateTime(2002, 06, 10));

11

_elek.Neptun = "ABC123";
_elek.Major = "Info BSc";
Student elek = _elek;

e Nem kell beirni, csak szemléltetés.

A hattérben tényleg egy (szdmunkra nem lathatd) tempordlis valtozéban fog torténni az
inicializdcid, ugyanis, ha az object initializer kivételt dob (az egyik setter daltal), az objektumunk
nem veszi fel a kivant értéket.

(r) Ebbdl latszik az objektum inicializalo els6dleges haszna, mégpedig, hogy nem Kkell
- allanddan kiirogatni, hogy melyik példanyra gondolunk (igy elrontani sem tudjuk).

Kollekcio inicializacio

Az egyszertsitett kollekci¢ inicializacio szintaxissal a lista teljes feltltése joval kevesebb koddal és
joval olvashatobban megadhatd. Rdadasul a kollekcio elemeit létrehozhatjuk az objektum
inicializacids szintaxissal is. A teljes lista 1étrehozast és -feltoltés részt cseréljik le az alabbira.

List<Person> people = new List<Person>

{
new Person("Horvath Aladar", new DateTime(1991, @6, 10)),
new Person("Kovacs Istvan", new DateTime(1994, 04, 22)),
new Person("Kovacs Géza", new DateTime(1998, 03, 16)),
new Student("Fel Elek", new DateTime(2002, 06, 10))

{ Neptun = "ABC123", Major="Info BSc"},

new Student("Hiany Aron", new DateTime(2000, 02, 13))

Irs

/**%/ /* foreach */

Nem kell az Add figgvényhivast és a lista referenciat kiirni, egyértelmd, hogy melyik listdhoz adunk
hozza.

7 Ez a forma is ugyanolyan Add figgvényhivasokra fordul, mint az eredeti
- valtozatban.

Probaljuk ki az alkalmazast! Lathatjuk, hogy a konstruktoron keresztil teljesen inicializalhato

Person példanyok esetében a Kkiiras teljes, viszont vannak olyan Student példanyok, ahol a Kkiiras
ures értékeket taldl. Ezzel a jelenséggel a kovetkez6 gyakorlatokon tovabb foglalkozunk.

12

C# alapok II.

ElOokészités

Els6 1épésként hozzunk létre egy .NET Core C# konzolalkalmazdast: a projektsablon szlir6ben
valasszuk a C# nyelv - Windows platform - Console projekttipust. A szlrt listdban valasszuk a
Console App sablont (most mar ne a .NET Framework-os legyen). A neve legyen HelloCSharp2. A

solutiont ne tegyuk kilon mappdba (Place solution and project in the same directory legyen
bekapcsolva). A megcélzott framework verzio legyen .NET 6.

Legfelso szintii utasitasok, implicit globalis névtér-hivatkozasok

Csodélkozzunk ra, hogy a generalt projekt minddssze egyetlen érdemi sort tartalmaz.
Console.WriteLine("Hello, World!");

C# 10-ben a program belépési pontjat add forrasfajlt jelentdsen lerovidithetjiik:

* a f4jl tetején 1évé using-okat elhagyhatjuk, ha azok implicit hivatkozva vannak. Az implicit
hivatkozott using-ok projekttipustol fiiggenek és a dokumentaciobol olvashatjuk ki

* a Main figgvényt tartalmazo osztdly deklaracidjat (namespace blokk, class blokk) elhagyhatjuk,
ezt a fordit6 generalja nekiink

* a Main fuggvény deklaraciojat szintén generdlja a fordito. A metdédus neve nem definialt, nem
(biztos, hogy) Main. A metddus szignaturaja attol fugg, milyen utasitdsokat adunk meg a
forrasfajlban. Példaul, ha nincs return, akkor void visszatérési értékd. A paramétere viszont
mindig string[] args.

* a fuggvény blokkba nem foglalt kod a generalt belépési pont figgvény belsejébe Kkertl.
Fuggvényt is irhatunk, az a belépési pontot tartalmazo generalt osztaly tagfliiggvénye lesz.

* tipusokat, osztdlyokat is definidlhatunk, de csak a legfelsd szinti kddot kovet6en

Fontos észrevétel a fentiekbdl: ezen képesség nem valtoztatja meg a C# semmilyen

A alapvetd jellemzgjét, példaul ugyanugy minden fiiggvénynek osztalyon belil kell
lennie. A forditas sordn a legfels6 szintl utasitasok kddja ugy egésziil ki, ami mar
minden szabalynak megfelel.

A legfels6 szintl kdd olyan, amit a program mas részér6l nem tudunk hivni, hiszen
A nem is ismerjik a burkold osztaly nevét. Emiatt nincs értelme legfels6 szintl
kodban lathatosagi beallitasnak (private, protected sth.) vagy propertynek.

Akaddlyozzuk meg a program azonnali lefutasat egy blokkold hivassal.

/**/Console.WriteLine("Hello, World!");
Console.ReadlLine();

13

https://docs.microsoft.com/en-us/dotnet/core/project-sdk/overview#implicit-using-directives

Probaljuk ki a generdlt projektet mindenféle egyéb vdltoztatds nélkil, forditds (projekten
jobbklikk > Build) utan. Nézziink bele a kimeneti konyvtarba (projekten jobbklikk > Open Folder

in File Explorer, majd bin > Debug > net6.0): lathato, hogy az alkalmazdsunkbdl a forditds soran
egy cross-platform bindris (<projektnév>.dll) és .NET Core v3 ota egy platform specifikus futtathato
allomany (Windows esetén <projektnév>.exe) is generalodik. Kiprobalhatjuk, hogy az exe a szokott
modon indithato (pl. duplaklikkel), mig a dll a dotnet paranccsal.

dotnet <projektnév.d1l1l>

A dotnet parancshoz a dll konyvtaraban kell lenntink. Ehhez a legegyszertibb, ha a
(r) Windows féjlkezel6ben a megfelel6 konyvtarban allva az elérési utvonal mezot
et atirjuk a cmd szovegre, majd ENTER-t nyomunk.

Adjunk a létrejovo projekthez egy Dog osztalyt Dog.cs néven, ez lesz az adatmodelliink:

public class Dog

{
public string Name { get; set; }
public Guid Id { get; } = Guid.NewGuid();
public DateTime DateOfBirth { get; set; }
private int AgeInDays => DateTime.Now.Subtract(DateOfBirth).Days;
public int Age => AgelInDays / 365;
public int AgeInDogYears => AgeInDays * 7 / 365;
public override string ToString() =>
$"{Name} ({Age} | {AgeInDogYears}) [ID: {Id}]";

Az adatmodell az el6z6 6ran létrehozotthoz nagyon hasonlit, ennek viszont nincsen explicit
konstruktora és a Name és DateOfBirth tulajdonsagok publikusan is allithatok.

Hozzunk létre egy Dog példanyt objektum inicializacids szintaxissal, majd irjuk ki ezt a példanyt a
kezdeti k0szont6 szoveg helyett:

Dog banan = new Dog

{
Name = "Banan",
DateOfBirth = new DateTime(2014, 06, 10)
b
Console.WriteLine(banan);
/**/Console.ReadlLine();

Ezzel kész a kiindulo projektink.

14

Implicit tipusdeklaracio

A var kulcsszo jelent6sége: ha a fordito ki tudja taldlni a kontextusbdl az értékadds jobb oldalan allé
érték tipusat, nem sziikséges a tipus nevét explicit megadnunk, az implicit kovetkezik a kodbol.
Ebben az esetben a tipus egyértelmiien Dog. Ha csak deklaralni szeretnénk egy valtozot (nem adunk
értékul a valtozonak semmit), akkor nem hasznalhatjuk a var kulcsszot, ugyanis nem kovetkezik a
kodbdl a valtozo tipusa. Ekkor explicit meg kell adnunk a tipust.

/**/ Dog banan = new Dog
J*%) {
/**/ Name = "Banan",
/**/ DateOfBirth = new DateTime(2014, 06, 10)
/*%/ };
var watson = new Dog { Name = "Watson" };

var unnamed = new Dog { DateOfBirth = new DateTime(2017, 02, 10) };
var unknown = new Dog { };

//watson = 3; @

//var error; @

/**/Console.WriteLine(banan);
/**/Console.ReadlLine();

@ Forditasi hiba: a watson deklaracidjakor elddlt, hogy 6 Dog tipus, utélag nem lehet megvaltoztatni
és példaul szamértéket értékil adni. Ez nem JavaScript.

@ Forditasi hiba: implicit tipust csak ugy lehet deklardlni, ha egyuttal inicializaljuk is. Az

inicializacios kifejezés alapjan dél el (implicit) a példany tipusa.

O Probaljuk ki a nem fordulo sorokat, nézzik meg a fordité hibatizeneteit.
w

A var nem a gyenge tipusossag jele a C#-ban, nem ugy, mint pl. JavaScript-ben. Az

A inicializdciés sor utan a tipus egyértelmlien eld6l, utdna mar csak ennek a
tipusnak megfeleld miiveletek végezhet6k, példaul egy értékadassal nem
valtoztathatjuk meg a tipust.

A var-t tipikusan akkor alkalmazzuk, ha:

* hosszu tipusneveket nem akarunk kiirni
* feleslegesnek tartjuk az inicializacié mindkét oldalan kiirni ugyanazt a tipust

» anonim tipusokat hasznalunk (kés6bb)

Init-only setter

Az objektum inicializacié mikodéséhez sziikséges a megfelel6 lathatdsagu setter. Viszont egy ilyen
settert nem csak objektum inicializaciokor lehet haszndlni, hanem barmikor atallithatjuk egy
példany adatat (mutdcio).

15

Az alabbi példa egy ilyen utolagos maédositadsra / mutaciora.

/**/var watson = new Dog { Name = "Watson" };
watson.Name = "Sherlock";

Ez igy hiba nélkiil lefordul.

Kizdrolag az inicializacidra korlatozhatjuk a setter meghivasat az init-only setterrel.

/**/public class Dog

/**/{
public string Name { get; init; }
//...

/**/}

Ezutdn az inicializdciés sor tovabbra is lefordul, de a névatirdsos mar nem. Ez utdbbi sort
kommentezzik ki.

O Init-only settert az osztdly konstruktorabdl is meg lehet hivni - hiszen az is
- inicializacio.

Init-only settert tobb okbdl kifoly6lag is hasznalhatunk, példaul a tipus
(r) példanyainak immutabilis kezelését akarjuk Kkikényszeriteni, vagy csak
- inicializdcidra akarjuk korlatozni a propertyk bedllitasat, de nem akarunk ehhez
konstruktort irni.

Indexer operator, nameof operator, index inicializalo

A collection initializer analdgidjara jott létre az index initializer nyelvi elem, ami a korabbihoz
hasonléan sorban hiv meg egy operdtort, hogy madr inicializalt objektumot kapjunk vissza. A
kiilonbség egyrészt a szintaxis, masrészt az ilyenkor meghivott metédus, ami az index operator.

(r) Sajat tipusainkban lehetdségliink van definidlni és feliildefinidlni operatorokat,
- mint pl. +, -, indexelés, implicit cast, explicit cast, sth.

Tegytk fel, hogy egy kutydhoz barmilyen, tzleti logikdban nem felhasznalt informécio kertlhet,
amire altalanos strukturat szeretnénk. Vegyiunk fel a Dog osztdlyba egy string-object szotdrat,
amiben barmilyen tovabbi informadciot tarolhatunk! Ezen felil allitsuk be a Dog indexerét, hogy az a
Metadata indexelését végezze:

/**/public class Dog
/**/{
//...
public Dictionary<string, object> Metadata { get; } = new (); @

public object this[string key]

16

get { return Metadata[key]; }
set { Metadata[key] = value; }

/**/}

@ A new operator utani konstruktorhivas sok esetben elhagyhato, ha a bal oldal alapjan amugy is
tudhato a tipus.

Az ujabb projektsablonok sokkal kevesebb névtérdeklaracidt (using) generalnak
(r) alapbol. Ha kell, vegyik fel a sziikségeseket a fel nem oldott néven dallva a
w

gyorsmuvelet (villanykorte) eszkozzel (CTRL + .)

Az objektum inicializdlé és az index inicializal6 vegyithet6, igy az aldbbi mddon tudunk felvenni
tovabbi tulajdonsagokat a kutydkhoz a legfels6 szinti kodba:

var pimpedli = new Dog

{
Name = "Pimpedli",
Date0fBirth = new DateTime(2006, 06, 10),
["Chip azonositd"] = "123125A]"

Iy?

/**/ Console.WriteLine(banan);

Mivel indexelni altaldban kollekcidkat szokas (tomb, lista, szotar), ezért ezekben az esetekben igen
jo eszkoz lehet az index inicializald. Vegyunk fel egy uj kutyaszotart a kutydk kitenyésztése utan:

var dogs = new Dictionary<string, Dog>

{
["banan"] = banan,
["watson"] = watson,
["unnamed"] = unnamed,
["unknown"] = unknown,
["pimpedli"] = pimpedli
I

foreach (var dog in dogs)
Console.WriteLine($"{dog.Key} - {dog.Value}");

Probaljuk ki - minden név-kutya part ki kell irnia a sz6tarbol.

Elsére jo Otletnek tlinhet kivaltani a szovegliteralokat a Name property hasznalataval.

var dogs = new Dictionary<string, Dog>
{
[banan.Name] = banan,
[watson.Name] = watson,

17

[unnamed.Name] = unnamed,
[unknown.Name] = unknown,
[pimpedli.Name] = pimpedli

i
//ArgumentNullException!

Ez azonban Kkivételt okoz, amikor a kutya neve nincs Kitoltve, azaz null értékd. Esetiinkben elég
lenne az adott valtozo neve szovegként. Erre j6 a nameof operator.

var dogs = new Dictionary<string, Dog>

{
[nameof(banan)] = banan,
[nameof(watson)] = watson,
[nameof (unnamed)] = unnamed,
[nameof (unknown)] = unknown,
[nameof(pimpedli)] = pimpedli
bt

Ez a valtozat mar nem fog kivételt okozni.

A nameof operdtor sokfajta nyelvi elemet tdmogat, vissza tudja adni egy valtozo, egy tipus, egy
property vagy egy fliggvény nevét is.

A szotar feltoltését megirhatjuk kollekcio inicializacioval is. Ehhez kihaszndljuk, hogy a szétar tipus
rendelkezik egy Add metodussal, amelyik egyszeriien egy kulcsot és egy hozzatartozod értéket var:

var dogs = new Dictionary<string, Dog>

{
{ nameof(banan), banan },
{ nameof(watson), watson },
{ nameof(unnamed), unnamed },
{ nameof(unknown), unknown },
{ nameof(pimpedli), pimpedli }
b

Using static

Ha egy osztaly statikus tagjait vagy egy statikus osztdlyt szeretnénk hasznalni, lehet6ségiink van a
using static kulcsszavakkal az osztdlyt bevonni a névfeloldasi logikdba. Ha a Console osztalyt
referdljuk ilyen modon, lehet6ségiink van a rajta levfd metddusok meghivdsara az aktudlis
kontextusunkban anélkil, hogy az osztaly nevét kiirnank:

/**/using System;
using static System.Console;
//..
/**/foreach (var dog in dogs)
/*Console.*/WriteLine($"{dog.Key} - {dog.Value}");

18

/*Console.*/WriteLine(banan);
/*Console.*/ReadLine();

Az 4altalanos névfeloldasi szabdly tovadbbra is él: ha egyértelmiien feloldhatd a
O hivatkozds, akkor nem sziikséges kitenni a megkiilonboztetd el6tagot (itt: osztaly),
et killonben igen.

Nullozhato tipusok

Természetesen a referenciatipusok mind olyan tipusok, melyek vehetnek fel null értéket, viszont
esetenként jo volna, ha a null értéket egyébként felvenni nem képes tipusok is lehetének ilyen
értékiliek, ezzel pl. jelezvén, hogy egy érték be van-e allitva vagy sem. Pl. egy szam esetén a 0 egy
konkrét, helyes érték lehet a domain modelliinkben, a null viszont azt jelenthetné, hogy nem vett
fel értéket.

Vizsgdaljuk meg, hogy a konzolra torténé kiiraskor miért lesz az aktudlis év Watson kutya életkora!
Valamelyik Console.WritelLine sorhoz vegyunk fel egy toréspontot (F9), majd debuggolas kozben a
Locals ablakban (debuggolas kozben Debug » Windows > Locals) figyeljik meg az egyes példanyok
adatait. Watsont kinyitva lathatjuk, hogy a turpissag abbol fakad, hogy a DateOfBirth adat tipusa, a
DateTime nem referenciatipus, és alapértelmezés szerinti értéket veszi fel, ami 0001. 01. 01. 00:00:00
- hiszen nem allitottunk be mast.

Ismeretlen sziletési datumu, koru egyedek helyes tarolasdhoz az Age tulajdonsag tipusat
valtoztassuk int?-re! Az int? szintaktikai édesitdszere a Nullable<int>-nek, egy olyan struktdrdnak,
ami egy int értéket tarol, és tarolja, hogy az be van-e allitva vagy sem. A Nullable<int> szignaturait
megmutathatjuk, hogyha a kurzort a tipusra helyezve F12-t nyomunk.

Moadositsuk a Dog Age és DateOfBirth tulajdonsagait is, hogy tudjuk, be vannak-e allitva az értékeik:

public class Dog

{
//...
public DateTime? DateOfBirth { get; set; }
private int? AgeInDays => (-DateOfBirth?.Subtract(DateTime.Now))?.Days;
public int? Age => AgelInDays / 365;
public int? AgeInDogYears => AgelInDays * 7 / 365;
//...
}
7 Orvendezziink, hogy az alap aritmetikai operdtorok pont ugy miikodnek, ahogy
- szeretnénk (null bemenetre null eredmény), nem kellett semmilyen trikk.

19

Az AgelInDays akkor ad vissza null értéket, ha a DateOfBirth maga is null volt. Tehdt ha nincs
megadva szlletési datumunk, nem tudunk életkort sem szamitani. Ennek Kkifejezésére
hasznalhatjuk a 7. (Elvis, magyarban Kozso - null conditional operator) operatort: a kiértékelendo
érték jobb oldalat adja vissza, ha a bal oldal nem null, kilonben null-t. A kifejezést meg kellett
valtoztatnunk, hogy a Date0fBirth-b6l vonjuk ki a jelenlegi ddtumot és ezt negdljuk, ugyanis a null
vizsgalando érték a bindris operator bal oldalan kell, hogy elhelyezkedjen.

Az Elvis operator nevének eredetére tobb magyarazatot is lehet taldlni, a forrasok
annyiban nagyrészt megegyeznek, hogy a kérddjel tekered6 része az énekes

o jellegzetes bodorodd hajviseletére emlékeztet, a pontok pedig a szemeket jelolik,
igy végulis a ?. egy Elvis emotikonként foghato fel. Ezen logika mentén adddik a
magyar megfelel6, a Kozs6 operator, hiszen a szem kortl tekerg6z6 legikonikusabb
hajtincs a magyar zenei kulturdban Kozso nevéhez kothet6.

Ha igy futtatjuk az alkalmazast, az AgeInDays és a szdrmaztatott tulajdonsagok értéke null (vagy
kiirva tres) lesz, ha a szliletési datum nincs megadva.

Rekord tipus
A rekord tipusok specialis tipusok, melyek:

* egyenl@ségvizsgalat sordn érték tipusokra jellemz6 logikat kovetnek, azaz két példany akkor
egyenld, ha adataik egyenldek

* kdnnyen immutébilissa tehet6k, konnyen kezelhet6k immutdbilis tipusként
A Dog tipus ezzel szemben jelenleg:

* nem immutdbilis, hiszen a sziiletési datum barmikor médosithato (sima setter)
» egyenldségvizsgdalat soran a normal referencia szerinti 6sszehasonlitast kovet

Az automatikusan generaldédd egyedi azonositot iktassuk ki a Dog osztdlybol, hogy az adat alapu
0sszehasonlitast konnyebben tesztelhessik.

public Guid Id { get; } = Guid/*.NewGuid()*/.Empty;
Vegyunk fel egy logikailag megegyez6 példanyt.

/**/var watson = new Dog { Name = "Watson" };
var watson2 = new Dog { Name = watson.Name };

Ismét alljunk meg debug sordn valamelyik WritelLine soron. A Locals ablakban nézziik meg, hogy a
két példany minden adata megegyezik. A Watch ablakban (debuggolas kozben Debug » Windows >

Watch > Watch 1) értékeljik ki a watson == watson2 Kkifejezést. Lathatjuk, hogy ez az
egyenl@ségvizsgalat hamist ad, ami technikailag helyes, mert két kiilonb6z6 memdriateriletrél van
sz0, a referencidk nem ugyanoda mutatnak a memoridban. Sok esetben azonban nem ezt
szeretnénk, hanem példdul a dupla rogzités elkerulésére az adatok alapjan torténd

20

https://hu.wikipedia.org/wiki/Kozso

0sszehasonlitast, ami érték tipusoknal van. Referencia tipusokndl klasszikusan ezt a GetHashCode,
Equals fuggvények feliildefinidldsaval értik el (vagy az IComparable<T>, IComparer<T> interfészre
épuld logikakkal). Egy ujabb lehetdség a rekord tipus hasznalata.

Pozicid alapu megadas

Vegyunk fel a Dog tipus adatainak megfelel6 rekord tipust, minddssze egy kifejezésként. A Dog tipus
ala:

public record class DogRec(
Guid Id,
string Name,
DateTime? DateOfBirth=null,
Dictionary<string, object> Metadata=null

)

0 A record class jelolobdl a class elhagyhato.

Ez az un. pozici6 alapu megadasi forma, ami a leginkdbb roviditett megadasi formdaja a rekord
tipusnak. Ebbdl a rovid formabol, mindenfajta extra kod irdsa nélkul a fordité szamos dolgot
general:

* a zdarojelen beluli felsorolasbol konstruktort és dekonstruktort

* a zdarojelen beluli felsorolds alapjan propertyket get és init tagfiggvényekkel

 alapértelmezett logikat az érték szerinti 6sszehasonlitdshoz

* klonozo6 és masold konstruktor logikdkat

 alapértelmezett formazott kiirast, szoveges reprezentaciot (ToString implementaciot)

fgy egy konnyen kezelhetS, immutdbilis, az Osszehasonlitdsokban érték tipusként viselkedd
adatosztalyunk lesz.

Az Id-nek nem tudjuk bedllitani ebben a formdban az alapértelmezett Guid.Empty

A értéket vagy a Metadata-nak az 0j példanyt, mert az egyenl6ségjeles kifejezésekbdl
alapértelmezett Kkonstruktorparaméter-értékek lesznek, amik csak statikus,
forditasi idében kiértékelhet6 kifejezések lehetnek.

Vegyunk fel a tobbi Watson példany mellé két ujabbat, de itt mar az Uj rekord tipusunkat
hasznaljuk.

var watson3
var watson4

new DogRec(Guid.Empty, "Watson");
new DogRec(Guid.Empty, "Watson");

A fentebbi Watch ablakos mddszerrel ellenérizziik a watson3 == watson4 kifejezés értékét. Ez mar
igaz érték lesz az adatmez6 alapu 6sszehasonlitasi logika miatt.

21

Probaljuk ki ugyanezt a kiértékelést az alabbi valtozattal:

new DogRec(Guid.Empty, "Watson");
new DogRec(Guid.Empty, "Watson"
/*0j paraméter ->*/, DateTime.Now.AddYears(-1));

/**/var watson3
/**/var watson4

Ez hamis értéket ad, az egyenldségnek minden mezdre teljestilnie kell, nem csak a mindkett6ben
kitoltottekre.

A DogRec tipus alapvet6en immutdbilis, a példanyainak alapadatai inicializdlds utdn nem
modosithatok. Probaljuk felilirni a nevet.

/**/var watson3 = new DogRec(Guid.Empty, "Watson");
/**/var watson4 = new DogRec(Guid.Empty, "Watson", DateTime.Now.AddYears(-1));
watson4.Name = watson3.Name + " 2"; //<= nem fordul

Nem fog lefordulni, mert minden property init-only tipusu. A sor jobboldala egyébként lefordulna,
tehat a lekérdezés (getter hivas) mikodne.

Ha immutdbilis tipusokkal dolgozunk, akkor mutdci6 helyett Uj példanyt hozunk létre
megvaltoztatott adatokkal. Alapvet6en ezt az OO nyelvekben mdasold konstruktorral oldjuk meg. A
rekord tipusndl ennél is tovabbmenve masolo kifejezést hasznalhatunk.

/**/var watson4 = new DogRec(Guid.Empty, "Watson", DateTime.Now.AddYears(-1));
var watsonb = watson4 with { Name = "Sherlock" };
WritelLine(watson4);
WriteLine(watsonb);

Futtataskor a konzolban gyonyorkodjunk a rekord tipusok alapértelmezetten is olvashatd szoveges
kiirasaban.

A masold kifejezésben a with operdtor elétt megadjuk, melyik példanyt klonoznank, majd az
inicializacio részeként milyen értékeket allitandnk at, ehhez az objektum inicializacids szintaxist
haszndlhatjuk. Fontos esziinkbe vésni, hogy a masolds eredményeként uj példany jon létre, Uj
memoriatertlet foglalddik le. Gondoljunk erre akkor, amikor egy ciklusban hasznaljuk ezt a
modszert sok egymast kovetd maddositasra.

Mire j6 a rekord tipus, az immutabilitdas? Az immutdabilis tipussokkal vald
hatékony és eredményes munka madsfajta, az imperativ nyelvekhez szokott
fejleszt6k szdmdra szokatlan modszereket kivan. Vannak tertiletek, ahol ez a

o befektetés megtéril, ilyen példaul a tobbszalu kornyezet. A legtobb szalkezeléssel
kapcsolatos probléma ugyanis a szdlak altal kozosen hasznalt adatstrukturak
mutdaciojara vezethet6 vissza (Un. race condition, versenyhelyzet). Nincs mutacio -
nincs probléma. (No mutation - no cry)

22

Kitéro: a szotar visszavag

A rekord tipus altal biztositott kellemes tulajdonsagok csak akkor érvényesek, ha nem keverjik
hagyomanyos referencia tipusokkal.

A szokdsos maddszerrel ellendrizziik le, hogy a watson5 == watson6 kifejezés igaz-e. Igen, hiszen
minden Kkitoltott adatuk egyezik.

/**/var watson4 = new DogRec(Guid.Empty, "Watson", DateTime.Now.AddYears(-1));
/**/var watson5 = watson4 with { Name = "Sherlock" };
var watsonb = watson4 with { Name = "Sherlock" };
/**/WriteLine(watson4);
/**/WriteLine(watsonb);
WriteLine(watsonb);

Vigyunk be egy artatlan inicializaciot a Metadata propertyre.

new DogRec(Guid.Empty, "Watson", DateTime.Now.AddYears(-1));
watsond with { Name = "Sherlock"

, Metadata = new Dictionary<string, object>() };
/**/var watson6 = watson4 with { Name = "Sherlock"
, Metadata= new Dictionary<string, object>() };

/**/var watson4
/**/var watsonb

/**/WriteLine(watson4);
/**/WriteLine(watsonb);
/**/WriteLine(watson6);

Ezzel eléggé illogikus modon hamisra valtozik a watson5 == watsonb kifejezés. Az oka az, hogy a
Metadata szotar egy klasszikus referencia tipus, az dsszehasonlitdsnal a klasszikus memdriacim-
0sszehasonlitas torténik, viszont az a két Uj szotdr példany esetében eltérd lesz. A formdazott
szoveges Kkiirdsba is belerondit a szoOtar, mert ott is a szOtdr tipus alapértelmezett szoveges
reprezentacioja jut érvényre, ami a tipus neve.

Klonozzunk tovabb, aztan probaljunk mutaciot végrehajtani a Metadata szotaron.

/**/var watson6 = watson4 with { Name = "Sherlock"

/*¥*/ , Metadata = new Dictionary<string, object>() };
var watson7 = watsonb with { Name = "Watson" };

watson7.Metadata.Add("Chip azonositdé", "12345QQ");

/**/WriteLine(watson4);

Ez lefordul, pedig ez mutaci6. A Locals ablakban figyeljik meg a watson6 és watson7 szotarait:
mindkettébe bekerilt a chip azonositd. Ez az un. shallow copy jelenség, amikor nem a szotar
memdriaterilete klénozddik, csak a ra mutaté referencia, ami azt eredményezi, hogy a két
példanynak kozos szotéara lesz.

Osszességében az adatstrukturankban megjelend klasszikus referencia tipus elrontja:

23

e az immutabilitast
e az érték szerinti 6sszehasonlitast
* a formazott szoveges megjelenést

e a klonozast

(r') Immutdabilis kornyezetben torekedjink arra, hogy a teljes adatstrukturank
- tdmogassa az immutabilis kezelést.

Normal megadas

Ha nincs szukségunk a kikényszeritett immutabilitdsra, akkor hasznalhatjuk a rekord normal
megadasat. Fogjuk a Dog osztalyt, masoljuk le a kodjat, adjunk neki mas nevet és class helyett record
jelolét. A Dog osztaly folé:

public record DogRecExt

{
public string Name { get; init; }
public Guid Id { get; } = Guid.Empty;
public DateTime? DateOfBirth { get; set; }
public Dictionary<string, object> Metadata { get; } = new();

private int? AgeInDays => (-DateOfBirth?.Subtract(DateTime.Now))?.Days;
public int? Age => AgeInDays / 365;
public int? AgeInDogYears => AgelInDays * 7 / 365;

public object this[string key]

{
get { return Metadatal[key]; }
set { Metadata[key] = value; }

o A ToString implementdacidjat elhagytuk az el6z6 szakaszban emlitettek miatt.

A legfelso szintl kddba:

/**/WriteLine(watsonb);
var watson8 = new DogRecExt { Name = "Watson" };
watson8.Date0fBirth = DateTime.Now.AddYears(-15);
var watson9 = watson8 with { };
WriteLine(watson8);
WriteLine(watson9);

Ellenérizzik le a rekord tulajdonsagokat:

» A konzol kimeneten a formdazast, tovabba a mutacié miikodését, azaz a watson8 sziiletési datuma

24

a beallitott lesz. Ez nem csoda, hiszen a property deklaracioban engedtiik a mutaciot.

* A konzol kimeneten megfigyelt példanyadatokon a klonozd Kkifejezés muiikodését. Semmi
kilonods, ugyanugy mikodik, mint a tomor formanal.

* A Watch ablakban watson8 == watson9 egyenldséget. Ez igaz, mert minden adattagjuk egyezik.

A rekordoknak tovabbi valfajai vannak, ugyanis struktura is lehet rekord, ilyenkor
a record struct kulcsszo part hasznaljuk a tipus deklaraciojanal. S6t, a readonly

@ record struct egy immutdbilis record struct. Ezen valfajok nyilvan
kiilonboz6képpen viselkednek, mely viselkedéseket itt most nem részletezziik, de a
dokumentacioban megtaldlhatok.

25

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/record

LINQ

Elokészités

A

gyakorlat kezdetén toltsik le a [kiinduld projektet](https://github.com/bmeaut/dotnet/archive/

refs/heads/master.zip) zip-ként. Miutan kitomoritettiik a fajlokat, toltsuk be Visual Studio-ba a
HelloLinq mappdabol a HelloLing.sln solution fajlt.

Megnyitas utan tekintsiik at a kiindul6 projektben lev6 fajlokat:

* Program.cs: a legfels6 szintli kodot tartalmazo osztaly. Taldalhato benne egy Dogs valtozd, ami a

Dog osztdly statikus Repository tulajdonsagaba hiv at.

* Dog.cs: a kordbbi gyakorlatokon hasznalt adatmodell (aprébb mddositasokkal). Bekerult egy

Siblings tulajdonsag, a ToString pedig kiirja a kutydhoz tartozd testvérek szamat is (ehhez a
TrimPad b6vitd metodust haszndlja). A statikus Repository tulajdonsdg mogott egy lustan
inicializalt Lazy<T> RepositoryHolder talalhatd, ami egy megfelel6en formazott bemeneti CSV
fajlbol elkésziti szdmunkra az adatmodellt, amivel a kés6bbiekben dolgozunk. Ennek
implementaciojat elég a gyakorlat végén megnézni. Az Import és Export fliggvények a kutyak
sorositasat végzik el mindkét irdnyban.

* Extensions/StringExtensions.cs: ez az osztdly tartalmaz egy segédmetddust a formazott

kiirdshoz. A Dog ToString metddusa haszndlja fel. A bvit6 metddusos részben lesz jelentésége.

» dogs.csv: egy pontosvesszOvel tagolt adathalmaz, amelyben 100 darab el6re felvett kutya adata

talalhat6. Innen puskazhatunk, ha ellen6rizni akarjuk, hogy helyesek-e a programunk
eredményei.

A kiinduld projektben a globdlis implicit névtérhivatkozasok ki vannak kapcsolva. A csproj fajlban

megnézhetjik (jobb klikk a projekten > Edit Project File):

<ImplicitUsings>disable</ImplicitUsings>

Lambda kifejezések, delegatok

Gyakori feladat, hogy objektumok kollekcidjaval kell dolgoznunk. Képesek vagyunk olyan jellegi
segédfiiggvényeket késziteni, amik példdul egy kollekcidban kikeresik az 0sszes olyan elemet,
amely egy megadott feltételnek eleget tesz.

A Program.cs fajlban lathat6 ennek a kezdeti naiv valtozata, szemrevételezziik:

26

static List<Dog> ListDogsByNamePrefix(IEnumerable<Dog> dogs,
string prefix)
{
var result = new List<Dog>();
foreach (var dog in dogs)
{
if (dog.Name.StartsWith(prefix,

https://github.com/bmeaut/dotnet/archive/refs/heads/master.zip
https://github.com/bmeaut/dotnet/archive/refs/heads/master.zip

StringComparison.OrdinalIgnoreCase))
result.Add(dog);
}

return result;

Probaljuk ki! A kéd mikddik, viszont nem ujrahasznosithaté. Ha barmi mds alapjan szeretnénk
keresni a kutydk kozott (pl. a neve tartalmaz-e egy adott szovegrészt), mindig egy uj segédfiiggvényt
kell készitenlink, ami rontja a kod ujrahasznosithatosagat.

Oldjuk meg ugy, hogy az altalanos problémat is megoldjuk! Ehhez az sziikséges, hogy a kollekcionk
egyes elemein kiértékelhessink egy, a hivé altal megadott predikdtumot. Készitsik el az
altalanosabb valtozatot, ehhez felhasznalhatjuk a ListDogsByNamePrefix kodjat.

static List<Dog> ListDogsByPredicate(IEnumerable<Dog> dogs,
Predicate<Dog> predicate)

{
var result = new List<Dog>();
foreach (var dog in dogs)
{
if (predicate(dog))
result.Add(dog);
}
return result;
}

A legfelsd szintl kddban igy hivhatjuk meg (felhasznalhatjuk az eredeti ciklust):

foreach(var dog in ListDogsByPredicate(Dogs,
delegate (Dog d) {
return d.Name.StartsWith(searchText,
StringComparison.OrdinallgnoreCase);

})
)
/**/ Console.WriteLine(dog);

Egy egy bemend paraméter(i és egy logikai (bool) értéket visszado fliggvényt definidlunk helyben
(inline) és ezt (illetve a referencigjat) adjuk at. Haszndljunk inkdbb lambda Kkifejezést, az joval
rovidebben leirhato - egyeldre csak nézzik meg, de ne integraljuk a kodba:

d => d.Name.StartsWith(searchText, StringComparison.OrdinallgnoreCase);

Lambda kifejezéssel az egyetlen Kkifejezésh6l 4ll6 fiiggvényeket adhatjuk meg
@ nagyon kompakt modon. A =-tol balra elnevezzik a bemend paramétereket,
jobbra pedig felhasznal(hat)juk. A return, {} és egyéb sallangokat elhagyhatjuk.

27

Vessiik 0ssze, hogy az els6 esetben explicit megadtuk, hogy a bemend paraméteriink Dog, most
viszont nem. Ezt a fordité statikus kodanalizis alapjan el tudja donteni: a d valtozonk nem lehet
mas, csak Dog (statikus) tipusu, ezért csak igy hasznalhatjuk, viszont nem Kkell kiirnunk a tipust.

A lambda kifejezések egy lehetséges mddja a delegatok leirdsanak. A delegat kddot reprezental,
viszont a kodot kezelhetjiik adatként is.

Probaljuk meg a delegatunkat kivenni egy implicit tipusu valtozdba a ciklus el6tt:

var predicate = d => d.Name
.StartsWith(searchText, StringComparison.OrdinalIgnoreCase);
// forditasi hiba!
/**/foreach (var dog in
/**/ ListDogsByPredicate(Dogs, predicate)) //<- predicate-ra irjuk at
/**/ Console.WritelLine(dog);

Forditasi hibat kapunk, lambda kifejezés tipusa nem lehet implicit eldonthetd az inicializacios
sorban: sem a bemené paraméter pontos tipusat nem tudjuk (Dog? Puppy?), sem a visszatérési
értéket (bool? object? void?). Tehat explicit meg kell adnunk a tipust:

Predicate<Dog>
/**/predicate =
/**/ d => d.Name.StartsWith(searchText, StringComparison.OrdinallgnoreCase);

Ezutdn fordul és fut is az alkalmazasunk.

(r) Ehhez tudnunk kellett, hogy a Predicate<T> megfelel§ szignaturaju. Mutassuk meg
- ezen tipus dokumentaciojat vagy tegyuk a kurzort a tipusra és nyomjunk F12-t.

Func<>, Action<>

Ismerkedjink meg a Func és Action altalanos delegattipusokkal. Ezzel a két generikus tipussal
(pontosabban a valtozataikkal) gyakorlatilag az 0sszes gyakorlatban el6forduld
figgvényszignaturat le lehet fedni. Példaul a fenti szlir6logikat is dtirhatnank erre:

Func<Dog, bool> dogFunc =
d => d.Name.StartsWith(searchText, StringComparison.OrdinalIgnoreCase);

A dogFunc és a predicate kompatibilisnek tlinhetnek (elvégre a jobboldaluk ugyanaz), &m ha
lecserélnénk pl. a ListDogsByPredicate(Dogs, predicate) hivasban a predicate-et dogFunc-ra, a kod
nem fordulna, ugyanis a két delegattipus nem kompatibilis.

Az Action<> hasonld elven miikodik, visszatérési érték nélkuli fliggvényekre.

INFO: Ha minden esetre jok, miért vannak haszndlatban Action<> és Func<>-on kivil mas
delegattipusok? Egyrészt torténelmi okok miatt. Késébb jelentek meg, mint a specifikusak, példaul a

28

Predicate<T>. Masrészt a specifikusabbak a neviikkel kifejez6bbek lehetnek.

A fenti predikatumvaltozataink mind nem tiszta figgvények (pure function),
ugyanis olyan adattol is fligg a visszatérési értéke, ami nem szerepel a

A paraméterlistdjan - ez esetlinkben a searchText valtozo. A kddunk azért mikodik,
mert a delegat megadasakor a searchText aktudlis értékét elkapjuk (capture),
belerakjuk a fliiggvénylogikaba.

Probaljuk a dogFunc-ot var-ként deklardlni.

var dogFunc =
d => d.Name.StartsWith(searchText, StringComparison.OrdinallgnoreCase);
//Forditasi hiba!

A fordit6 nem tudja meghatarozni a d paraméter tipusat, ezért kapjuk a forditasi hibat. Adjuk meg
explicit a paraméter tipusat.

var dogFunc =
(Dog d) => d.Name.StartsWith(searchText, StringComparison.OrdinallgnoreCase);

Debugger-rel ellen6rizhetjik, hogy a dogFunc valddi tipusa Func<Dog, bool> lesz.

IEnumerable<T> bovito metodusok

Vigyiik tovabb az altaldnositast. Irjunk olyan logikakat, mely nem csak kutydk listdjara, hanem
barmilyen felsorolhaté (enumeralhat6) kollekciéra miikodik. frjunk IEnumerable<T> tipuson miikddé
segédfiiggvényeket.

Hozzunk létre egy EnumerableExtensions (I betli nélkil, az ugyanis interfészre utal) nevi fajlt az
Extensions mappaban! Elsoként valositsuk meg az 0sszegz6 logikat.

namespace HellolLing.Extensions.Enumerable;

public static class EnumerableExtensions

{
public static int Sum<T> (IEnumerable<T> source,
Func<T, int> sumSelector)
{
var result = 0;
foreach (var elem in source)
result += sumSelector(elem);
return result;
}
}

Hivjuk meg a legfels6 szint kddbol.

29

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/lambda-expressions#capture-of-outer-variables-and-variable-scope-in-lambda-expressions

using Hellolinq.Extensions.Enumerable;
/**/1Enumerable<Dog> Dogs = Dog.Repository.Values;

foreach (var dog in Dogs)
Console.WritelLine(dog);

Console.WriteLine("Eletkorok 0sszege: " +
$"{EnumerableExtensions.Sum(Dogs, d => d.Age ?? 0)}");

/**/string searchText;

A segédfiiggvények hatranya, hogy ismerniink kell a segédosztaly nevét. Tovabba jobb lenne, ha a
kollekcidn kozvetlentl hivhatndnk az 6sszegzd fliggvényt. Erre megoldds a bévité metddus.

A bOvité metddusok:

* statikus osztalyban definidlhatok
* statikus figgvények

* els6 paramétere el6tt this jeloli, hogy melyik tipust bdvitik

Az els6 paraméter elé tegyik be a this jelol6t.

/**/ public static int Sum<T> (this IEnumerable<T> source,
/*¥*/ Func<T, int> sumSelector){/*...*/}

Most mdar hasznalhatjuk azt a szintaxist, mintha a kollekcidnak eleve lenne 6sszegz6 fliggvénye:

/* Console.WriteLine("Eletkorok 6sszege: " +
$"{EnumerableExtensions.Sum(Dogs, d => d.Age ?? 0)}");*/
Console.WriteLine($"Eletkorok 8sszege: {Dogs.Sum(d => d.Age ?? 0)}");

A bdvité metddusok semmilyen médon nem bontjak meg a tipusok egységhezarasi

A képességeit. A fiiggvények implementdacioi a bévitend6 tipusok kivilrdl is elérhetd
figgvényeit, propertyjeit haszndalhatjak, privat adattagokhoz, fliggvényekhez nem
férnek hozza.

A b6vitd metodusok alkalmazasakor nagyon fontos, hogy bar a bdvité metddus
osztalyanak nevét nem irjuk ki, az osztaly nevének feloldhatonak kell lennie, azaz
A az osztdly névterét using direktivdaval be kell hivatkoznunk. Egy proba erejéig
kommentezzik ki a using HellolLing.Extensions.Enumerable; sort és ellenfrizziik,
hogy nem fordul a kodunk, a b6vitd metodus nevét a fordité nem tudja feloldani.

Gyakorlasképpen irhatunk tovabbi gyakori adatfeldolgozdsi miveletekre fliggvényeket, mint
amilyen az atlagszamitas, szélséérték-keresés.

30

/**/public static class EnumerableExtensions

/**/{
//...
public static double Average<T> (this IEnumerable<T> source,
Func<T, int> sumSelector)
{
var result = 0.0; // Az osztas mivelet miatt double
var elements = 0;
foreach (var elem in source)
{
elements++;
result += sumSelector(elem);
}
return result/elements;
}
public static int Min<T> (this IEnumerable<T> source,
Func<T, int> valueSelector)
{
int value = int.MaxValue;
foreach (var elem in source)
{
var currentValue = valueSelector(elem);
if (currentValue < value)
value = currentValue;
}
return value;
}
public static int Max<T> (this IEnumerable<T> source,
Func<T, int> valueSelector)
=> -source.Min(e => -valueSelector(e));
/**/}

Probaljuk ki az uj fuggvényeket. Mivel a Dogs tipusa IEnumerable<Dog>, igy a bévitd metodusok
bévitendd tipusa illeszkedik ra.

/**/Console.WriteLine($"Eletkorok 6sszege: {Dogs.Sum(d => d.Age ?? 0)}");
Console.WriteLine($"Atlagos életkor: {Dogs.Average(d => d.Age ?? 0)}");
Console.WriteLine(

$"Minimum-maximum életkor: " +
$"{Dogs.Min(d => d.Age ?? @)} | {Dogs.Max(d => d.Age ?? 0)}");

A StringExtensions osztalyban egy lambdaként megvaldsitott bévitd metodust
lathatunk, ami egy szoveget adott hosszra (szélességre) egészit ki szokozokkel. A
figgvényt a Dog ToString metddusa haszndlja fel.

31

Gyakori lekérdezo miiveletek, yield return

Gyakran el6fordul, hogy egy listat sz{irni vagy projektalni szeretnénk. frjunk sajat generatort
ezekhez a miiveletekhez is az EnumerableExtensions-be:

public static IEnumerable<T>
Where<T> (this IEnumerable<T> source,
Predicate<T> predicate)

{
foreach (var elem in source)
{
if (predicate(elem))
yield return elem;
}
}

public static IEnumerable<TValue>
Select<T, TValue>(this IEnumerable<T> source,
Func<T, TValue> selector)

{
foreach (var elem in source)
{
yield return selector(elem);
}
+

Probaljuk ki a legfels6 szintli kod elején, valasszuk ki a 2010 el6tt sziiletett kutyak nevét és korat egy
stringbe:

/**/1Enumerable<Dog> Dogs = Dog.Repository.Values;
foreach (var text in Dogs
Where(d => d.DateOfBirth?.Year < 2010)
.Select(d => $"{d.Name} ({d.Age})"))

Console.WriteLine(text);

A vyield return egy hasznos eszkoz, ha IEnumerable-t kell produkdlnunk
visszatérési értékként. Segitségével mindig csak akkor allitjuk eld a kovetkezd
elemet, amikor a hivo kéri. A miikodését debuggerrel is figyeljik meg: tegyink

O breakpointot a két yield return sorra, majd F10-zel kovessiik végig, ahogy a foreach
elkéri a Select-t6] a kovetkez6 elemet, ami emiatt elkéri a Where-t6l, majd ujraindul
a ciklus. A hivasok allapotgépként miikodnek, a kovetkezd meghivaskor onnan
folytatodnak, ahonnan az el6z6 yield return-nél kiléptink.

Nem nagy meglepetés, hogy az altalunk megirt Sum, Average (melyek egyedi visszatérésiiek), Select

és Where (amik szekvencialis visszatérésiiek, generatorok) metddusok mind a .NET Kkeretrendszer
részét képezik (a System.Linq.Enumerable statikus osztadlyban definidlt b&vité metodusok). A LINQ

32

https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable

—Language INtegrated Query—ezeket a miiveleteket teszi lehet6vé IEnumerable interfészt
megvaldsité objektumokon. A LINQ fuggvények bovit6 metddusként lettek hozzdadva meglevd
funkcionalitashoz (kollekciokhoz, lekérdezésekhez), s6t, kiils6 library-k is adnak sajat LINQ b&vitd
metodusokat.

Cseréljuk le a Program.cs-ben a using HellolLing.Extensions.Enumerable hivatkozdst using
System.Ling-re: az altalunk megirt kdd tovabbra is ugyanazt az eredményt produkalja! Nézzik meg,
hogy hol vannak definidlva ezek a fliggvények a keretrendszeren belil: a kurzort tegytik a kodban
oda, ahol valamelyik kordbban megirt fliggvénytnket hivnank, majd nyomjunk F12-t. Probaljuk ki,
hogy tovabbra is az elvart médon miikddik-e a programunk.

A névtércsere helyett bekapcsolhatjuk a globdlis implicit névtér funkcidt, mert a

(r) System.Linq névtér is egy implicit hivatkozott névtér. Ehhez a projektfajlban az

- <ImplicitUsings>disable</ImplicitUsings> bedllitast irjuk at enable-re, majd a using
Helloling -en kiviil minden névtérhivatkozast toroljink a Program.cs-bdl.

Anonim tipusok

Lekérdezéseknél gyakran haszndlatosak az anonim tipusok, amelyeket jellemzden lekérdezések
eredményének ideiglenes, tipusos tarolasara hasznalunk. Az anonim tipusokkal lehetdségiink van
inline definidlni olyan osztalyokat, amelyek jellemz6en csak dobozolasra és adattovabbitasra
hasznaltak. Vegytlk az aldbbi példdkat a legfels6 szint{ kod elején:

new { Name
new { Name

var dolog1
var dolog2

"Alma", Weight = 100, Size = 10 };
"Korte", Weight = 90 };

Korabban mar emlitettik a var kulcsszot, amellyel implicit tipusu, lokalis valtozok definidlhatok. Az
értékadas jobb oldalan definidlunk egy-egy anonim tipust, amelynek felvesziink néhdany
tulajdonségot. A tulajdonsagok mind tipusosak maradnak, a tipusrendszeriink tovabbra is sértetlen.
Az implicit statikus tipusossag nem csak a var kulcsszoban jelenik meg tehdt, hanem az egyes
tulajdonsagok tipusaban is.

Az anonim tipusok:

* csak referencia tipusuak lehetnek (objektumok, nem pedig strukturak),
 csak publikusan lathato, csak olvashato tulajdonsagokat tartalmazhatnak,

* eseményeket és metddusokat nem tartalmazhatnak (delegate példanyokat tulajdonsagban
viszont igen),

 szerelvényen beliil 1athatok (internal) és nem szarmazhat bel6liik masik tipus (sealed)
* tipusnevét nem ismerjik, igy hivatkozni sem tudunk r4, csak a var-t tudjuk hasznalni
* nem haszndlhatok ott, ahol a var tipus se haszndlhato, tobbek kozott nem adhatjuk at

figgvénynek és nem lehet visszatérési érték sem

Ha az egeret a var kulcsszavak vagy egyes tulajdonsdgnevek folé visszuk, lathatjuk, hogy valéban
forditdsi ideji tipusokrol van szo.

33

G Figyeljuk meg, hogy az IntelliSense is mikodik ezekre a tipusokra, felkindlja a
- tipus property-jeit.

A fordité ujra is hasznositja az egyes tipusokat:
var dolgok = new { Name = "Gyimdlcsék", Contents = new[] { dolog1, dolog2 } };

A Contents tulajdonsag tipusa a fenti anonim objektumaink témbje, ezért nem is adhatndnk meg
masképpen (nem tudjuk a nevét, amivel hivatkozhatunk ra). A fordité most panaszkodik, ugyanis a
két dolog tipusa nem implicit kovetkeztethet§. Ha felvessziik a Size tulajdonsagot a dolog2
definiciéjaba, madris fordul.

var dolog2 = new { Name = "Korte", Weight = 90, Size = 12 };

O Ha végeztink az anonim tipusokkal valo ismerkedéssel, az ezekkel kapcsolatos
- kodsorokat kikommentezhetjuk.

LINQ szintaxisok

Az el6z6 részben ismertetett jellegli lekérdezések nagyban hasonlitanak azokhoz, amiket adatbazis-
lekérdezésekben alkalmazunk. A kilonbség itt az, hogy imperativ szintaxist hasznalunk, szemben
pl. az SQL-lel, ami deklarativat. Ezért is van jelen a C# nyelvben az un. query syntax, amely joval
hasonlatosabb az SQL szintaxisdhoz, igy az adatbazisokban jartas fejleszték is konnyebben
irhatnak lekérdezéseket. Ugyanakkor nem minden lekérdezést tudunk query syntax-szal leirni.

Ennek oka, hogy az operatorok bevezetése egy nyelvben elég draga - le kell péladul

o foglalni az operator nevét, amit utdna korlatozottan lehet csak hasznalni masra.
Ezért sem csinaltak meg minden LINQ fliggvénynek az operator pdrjat, csak az
SQL-ben gyakrabban hasznalatosabbaknak.

Az el6z6hoz hasonlo lekérdezést megirhatunk az alabbi médon query syntax hasznalataval:

using HellolLinqg.Extensions;
//...

/**/1Enumerable<Dog> Dogs = Dog.Repository.Values;
var query = from d in Dogs
where d.DateOfBirth?.Year < 2010
select new
{
Dog = d,
AverageSiblingAge = d.Siblings.Average(s => s.Age ?? @)
i
foreach (var meta in query)

{

34

Console.WriteLine(
$"{meta.Dog.Name} - {meta.AverageSiblingAgel}");

A query szintaxis végil a kordbban is hasznalt, un. fluent szintaxissa fordul. Ennek igazoldsara
nézzik meg F12-vel, hogy hol vannak definidlva az ujonnan megismert operatorok (select, where). A
két szintaxist szokas 0tvozni is, jellemz6en akkor, ha query szintaxisban irjuk a lekérdezést, és a
hidnyz6 funkcionalitast fluent szintaxissal potoljuk.

A fluent szintaxist olyan kialakitdsu API-kndl alkalmazhatjuk, ahol a figgvények a
o tartalmazo tipust varjak (egyik) bemenetként és azonos (vagy leszarmazott) tipust
adnak vissza. A LINQ-nél ez a tipus az IEnumerable<>.

Ezen az 6ran memoriabeli adatforrasokkal dolgoztunk (konkrétan a Dogs nevd Dictionary<,> tipusu
valtozoval), a LINQ operatorok kozul a memdriabeli listakon dolgozokat hasznaltuk, melyeket az
IEnumerable<> interfészre biggyesztettek rd bvit6 metodusként. Ezt a LINQ API-t teljes nevén LINQ-
to-Objectsnek hivjak, de gyakran csak LINQ-ként hivatkozzak.

Kitekint6: Expression<>, LINQ providerek

Vegyuk az aldabbi nagyon egyszerl delegate-et és ennek Expression<>-0s parjat.

Func<int, int> f =x =>x + 1;
Expression<Func<int, int>> e = x => x + 1;

Nézziik meg debuggolas kozben a Watch ablakban a fenti két valtozot. Az f egy delegate, leforditott
kodra mutato referencia, az Expression a jobb oldali kifejezésbél épitett (fa strukturaju) adat.

A fat kodda fordithatjuk a Compile metddus segitségével, mely a leforditott fliggvény referenciajat
(delegat példany) adja vissza, amit a figgvényhivas szintaxissal hivhatunk meg. Ebb6l 4ll 6ssze az
alabbi fura kinézet kifejezés:

Console.WriteLine(e.Compile()(5));

Bar az Expression<> emiatt okosabb valasztdsnak tlinik, 4&m a LINQ-to-Objects alapinterfészének
(ami a lekérdezofiiggvényeket biztositja) figgvényei Func<> / Action<> delegatokat varnak. Ami nem
csoda, hiszen memoriabeli listdkat altaldban sima programkoddal dolgozunk fel, nincs értelme
felépiteni kifejezésfat csak azért, hogy utdna egybdl kodda forditsuk. Emellett mds, memdriabeli
adatokon dolgoz6 LINQ technoldgia is 1étezik, pl. LINQ-to-XML sajat API-val (nem IEnumerable<>
alaptipussal).

A nem memoriabeli adatokon, hanem példaul kiils6 adatbazisbol dolgozo LINQ provider-ek viszont
IQueryable<>-t valdsitanak meg. Az IQueryable<> az IEnumerable<>-bol szdrmazik, igy neki is vannak
Func<> / Action<>-0s fliggvényei, de emellett Expression<>-0sek is. Ez utobbiak teszik lehetévé, hogy
ne csak .NET kodot generaljanak a lambda kifejezésekbdl, hanem helyette pl. SQL kifejezést - hiszen
egy relacids adatbazis adatfeldolgozé nyelve nem .NET, hanem valamilyen SQL dialektus.

35

A LINQ providerek altalanos miikodése

Bemenetuk: query fuggvényeknek (IQ<> vagy IE<> fliiggvényei vagy pl. XDocument) paraméteriil adott
lambdak (Func<> vagy Expression<>)

Kimenetik: az adatforrasnak megfelel6 nyelv(, a query-t végrehajto kod (NET kod vagy SQL).

LINQ-to-Objects esetén nincs valodi LINQ provider (a provider az IQueryable.Provider-en keresztiil
érhet6 el, de a List<> nem IQueryable!), hiszen nincs feladata: kodot kap bemenetiil, ugyanazt
kellene kimenetil adnia. A LINQ-to-XML is hasonlo elven mikodik.

Valddi LINQ providert valosit meg példdul az Entity Framework, de ezt a technoldgiat kés6bb
targyaljuk.

36

C# alapok IV.

Ezen a gyakorlaton tobb kilonféle nyelvi konstrukciot tekintiink at, vegyesfelvagott jelleggel. Az
egyes f6 témakoroket kilon projektként dolgozzuk ki. A projekteket hozzaadhatjuk az elséként

létrehozott projekt solutionjéhez (jobbklikk a solution-6n > Add » New project). Hozzdadds utan

ne felejtstk el atallitani a futtatando projektet: jobbklikk a projekten » Set as Startup Project.

Bejarasi problémak

Enumeratorok haszndalata esetén két alapvetd problémaba utkozunk: az egyik a mogottes kollekcio
moddosuldsa bejaras soran, a masik pedig a késleltetett kiértékelésbél adddod mellékhatdsok
kezelése.

Kollekcio modosulasa bejarasa soran
Szlrjunk le egy szdmokat tartalmazo kollekcidt csak azokra az elemekre, amik megfelelnek egy

feltételnek, és ezeket tavolitsuk el a kollekciobol!

var numbers = Enumerable.Range(1, 8).ToList();
foreach (var p in numbers)

{
if (p%2==0)
{
numbers.Remove(p);
}
+

numbers.ForEach(Console.WritelLine);

Futtataskor kivételt kapunk. Mi a probléma? A Kkollekciot bejaras kozben szerettik volna
modositani, viszont ez kénnyen nem vart mi{ikodést (tdlcimzést, nemdeterminisztikus bejarast)
tenne lehet6vé, ezért kivételt kapunk. Oldjuk meg a problémat: nem modosithatjuk a forrds
objektumot bejaras kozben, tehat ne azt a kollekcidt jarjuk be, masoljuk le!

/**/foreach (var p in numbers.Tolist()) // a Tolist bekeriilt
Vol LY

Ez megoldja a problémat, sikeril eltavolitani az elemeket a kollekcidbdl. De miért? A Tolist
IEnumerable bévitd, tehat bejarhatja a kollekcidt, ezutdn pedig egy masik List<> objektumban
tarolja az elemeket. Igy tehdt két listdnk lesz (a numbers és a numbers.Tolist visszatérési értéke),
amik kezdetben egymas klonjai, menet kozben az egyikb6l veszink ki, a masikon pedig iteralunk.

G Bar a fenti az altalanos szabdly, bizonyos kollekcidk bizonyos mddosité miiveletei
- mégsem dobnak kivételt, ilyen példaul a Dictionary<,> Remove és Clear miveletei.

37

Azonnali és késleltetett kiértékelés

Amennyiben egy metddus generator (IEnumerable vagy IEnumerable<> visszatérési értéki), az egyes
elemeken torténd iteracio a generatorok egymasha agyazasat jelenti, azaz az egyes generatorokban
a yield return altal visszaadott értéket fogja az enumerator MoveNext metddusa visszaadni. Amig az
IEnumerable-re van referenciank, és nem jarjuk azt kozvetlenul be, addig késleltetett kiértékelésrol
beszélunk.

Az eddigiek ala:

var i = @;
foreach (var n in numbers
MWhere(p => p > 2)
.Select(p => new { p, x = ++i }))

Console.WriteLine($"{n} - {i}");

Console.WriteLine();

i=0;

foreach (var n in numbers
Mhere(p => p > 2)
.Select(p => new { p, x = ++i })
.TolList())

Console.WriteLine($"{n} - {i}");

A Tolist hivasunk el6szOr bejarja az iteratort és visszaad egy listat, amelybe 0sszegyljti az
IEnumerable elemeit. Ezért az i valtozonk a masodik esetben nem egyltt inkrementalédik a
bejarassal, mert az kétszer torténik meg. Az elsd bejaraskor (a TolList hivdsakor) inkrementalodik
az i értéke, masodjara pedig mar csak bejarjuk a kapott listat. Eddigre az i értéke mar meg van
novelve.

Ezzel a megkozelitéssel futasidében is allithatunk 6ssze egy id6ben valtozo lekérdezést, amit majd
egyszer, a kés6bbiekben fogunk bejarni (pl. sorositaskor).

Aszinkron mukodés

Toltstink le egy HTML oldalt, és ezen a probléman Kkeresztill bemutatjuk az aszinkron programozasi
modellt. A HttpClient muUkodésének a részletesebb ismertetése most nem téma, csak a
legalapvet6bb funkcidkat fogjuk hasznélni.

A f6 gond, hogy a hosszan futdo miiveletek blokkolhatjak a f6/Ul/aktudlis szdl futasat, mindez kliens
alkalmazasok esetében ugy jelentkezik, hogy nem lesz az alkalmazasunk reszponziv a felhasznaloi
bemenetekre; szerveralkalmazdsok esetében pedig az adott kérést kiszolgdlo szal feleslegesen
blokkol6dik, amikor esetleg mdssal is tudna foglalkozni.

38

Otlet: a hosszan tarté miiveleteket végezzilk aszinkron modon, és ha az befejez6détt az
eredményr6l valamilyen moddon értesiljink. A Kkeretrendszer tObbféle mintdt kinal erre:
Asynchronous Programming Model (APM), Event-based Asynchronous Pattern (EAP), Task-based
Asynchronous Pattern (TAP). Mi most a legutébbival foglalkozunk csak, a tobbi jorészt elavultnak
szamit ma mar.

A TAP-ra mdar C# nyelvi tdmogatdst is kapunk az async/await kulcsszavakon keresztil. Vegyiink fel
egy Uj metodust és hivjuk meg a legfels6 szinti kodban. A megirt metddus irdsa soran hivatkozzuk
be a System.Net.Http névteret. A kdd semmi mast nem csindl, csak elindit aszinkron moédon egy
HTTP GET kérést a megadott URL-re, illetve a valasz tartalmat is aszinkron mdédon kiolvassa és egy
részét kiirja a konzolra.

LoadWebPageAsync();
Console.WriteLine("Ez a vége");
Console.ReadKey();

static async void LoadWebPageAsync()

{
using (var client = new HttpClient())
{
var response = await client.GetAsync(new Uri("http://www.bing.com"));
Console.WriteLine(response.StatusCode.ToString());
var content = await response.Content.ReadAsStringAsync();
Console.WriteLine(content.Take(1000).ToArray());
}
}

await: Mindig egy Task await-elhet6 (vagy taszk szerd dolog: vagyis van neki GetAwaiter metodusa,
ami meghatarozott metédusokkal rendelkez6 objektummal tér vissza)! Akar létre is hozhatunk egy
Task-ot, amit egy lokdlis valtozoban tarolunk, akkor azt is tudjuk await-elni.

async: Ha await-elni akarunk, akkor muszdj async-nak lennie a tartalmazé metddusnak, mert
ilyenkor épiti fel a fordito az aszinkron végrehajtashoz sziikséges allapotgépet.

Debuggoljuk ki! Minden Console, async sorra tegyunk téréspontot, debuggolds sordn (F5) kovessik
végig, milyen sorrendben éri el 6ket a végrehajtds. Nézzik meg, melyik rész milyen szalon fut le
(debug kozben Debug » Windows » Threads). A LoadWebPageAsync utani rész elébb fog lefutni, mint
az elsd await utdni rész. Az await utdni rész nem a Main Thread-en fut. Figyeljik meg azt is, hogy az
Ez a vége szoveg hamarabb kiirddik, mint a HTML oldal letoltése.

Probaljuk ki a Console.ReadKey-t kikommentezve is, ilyenkor jo eséllyel hamarabb ledll a process,
minthogy a Task befejez6dne. Az ilyen fire-and-forget tipusu hivasokndl nem figyel arra senki, hogy
itt még valami hattérmivelet folyik.

Az async void altaldban helytelen kdd, mert nem lehet bevarni a hattérmivelet

A végét. Az async Task maris jobb a bevarhatdsag és a hibakezelés miatt, és alig kell
modositani a kodot. Kivétel, amikor valamiért kotelezd a void, példaul, ha esemény

39

vagy interfész el6irja.

Az oldalletoltés bevarasa

Moddositsuk ugy a kdédot, hogy a LoadWebPageAsync utdni rész varja meg a letoltés befejezédését. Ez
akkor jo6 példaul, ha a letoltés utan valamit még szeretnék elvégezni a hivo figgvényben.

Moadositsuk a LoadWebPageAsync fejlécét, hogy taszkot adjon vissza:
public static async Task LoadWebPageAsync() //void helyett Task
Varjuk be az aszinkron muivelet végét a legfelsd szintl kodban.

await LoadWebPageAsync(); //await bekerilt

/**/Console.WriteLine("Ez a vége");
/**//*Console.ReadKey();*/

Figyeljuk meg, hogy igy mar az Ez a vége felirat mar a letoltés utan jelenik meg.

await-et hasznéltunk a legfels6 szintli kddban, ilyenkor automatikusan async kulcsszoval ellatott
Main generalddik - valami hasonld, mint az alabbi kodrészlet.

await LoadWebPageAsync();
Console.WriteLine("Ez a vége");
//Console.ReadKey();

Hattérmiivelet eredményének visszaadasa

Alakitsuk at, hogy a weboldal tartalmanak kiiratdsa a legfelsé szintli kddban torténjen, és a
LoadWebPageAsync csak adja vissza a tartalmat string-ként. Enhez mdédositsuk a visszatérési értéket
Task<string>-re, igy az await mar eredménnyel fog tudni visszatérni.

var content = await LoadWebPageAsync();
Console.WritelLine(content);

/**/Console.WriteLine("Ez a vége");
Console.ReadKey();

static async Task<string> LoadWebPageAsync() //generikus paraméter
/**/{
/**/ using (var client = new HttpClient())

J**/ {

[var response = await client.GetAsync(new Uri("http://www.bing.com"));
/**/ Console.WriteLine(response.StatusCode.ToString());

/**/

40

/**/ var content = await response.Content.ReadAsStringAsync();
return new string(content.Take(1000).ToArray());

/*%/ }

/**/}

A return valdjaban ezen Task eredményét dllitja be async metdédusok esetében, és nem egy
nemgenerikus Task objektummal kell visszatérjunk.

Nem(igazan) nullozhato referencia tipusok

Kordbban lattuk, hogy hogyan lehet egy érték tipusnak null értéket adni (Nullable<T>). Az érem
masik oldala a C# 8-ban megjelent nem nullozhato referencia tipusok. Nem egy Uj tipust vezettek
be, hanem az eddig megszokott tipusneveket értelmezi mashogyan a forditd. A projektfajlban az
alabbi bedllitas kapcsolja be ezt a funkcidt.

<Nullable>enable</Nullable>

O Ezen kivil még preprocessor direktivakkal is szabalyozhatjuk a mikodést.
w

Induljunk ki egy egyszerl személyeket nyilvantarté adatosztalybol, ahol elhatdrozzuk, hogy a
kozéps6 név kivételével a tobbi névdarab nem nullozhato szoveg lesz.

Console.WriteLine("Hello World!");
class Person

{
string FirstName; // Not null
string? MiddleName; // May be null
string LastName; // Not null

+

Ez maris szdmos figyelmeztetést generdl. A nem nullozhat6 referencia tipusok bekapcsoldsaval
alapesetben nem hibdk, csak uj figyelmeztetések generdlédnak. A vezetéknév és keresztnév
adatoknak nem szabadna null értékiinek lennie (a sima string tipus nem nullozhato tipust jelent),
viszont igy az alapérték nem egyértelm, explicit inicializalnunk kellene.

Fontos megértentnk, hogy a string tipus fizikailag tovabbra is lehet null érték{i, mindossze a fordito
szdmara jelezzik, hogy szandékunk szerint sohasem szabadna null értéket felvennie. A fordito
cserébe figyelmeztet, ha ezt megsértd kodot detektal.

Az egyik legkézenfekvobb megoldds (az inline inicializaci6 mellett), ha konstruktorban
inicializalunk konstruktorparaméter alapjan. Adjunk konstruktort a tipusnak:

public Person(string fname, string lname, string? mname)

{

FirstName = fname;
LastName = 1lname;

41

https://docs.microsoft.com/en-us/dotnet/csharp/nullable-references#nullable-contexts

MiddleName = mname;

Ezzel meg is oldottunk minden figyelmeztetést.

g Ha biztosan latni akarjuk az Osszes figyelmeztetést, akkor sima Build mitivelet
helyett haszndljuk a Rebuild-et.

a Sajnos a kotelez6en konstruktoron keresztiili inicializacié nem mindig miikodik,
példaul a sorositok altalaban nem szeretik, ha nincs alapértelmezett konstruktor.

Mennyire okos a fordité a null érték detektdlasaban? Nézzink par példat! Az aldbbi statikus
fuggvényt tegyik bele a Person osztalyunkba és vegyuk fel a using static System.Console;
névtérhivatkozast is.

static void M(string? ns)
{
WriteLine(ns.Length); ©)
if (ns !'= null)
{
WriteLine(ns.Length); @
}
if (ns == null)
{

return;

}

WriteLine(ns.Length); ©)
ns = null;
WriteLine(ns.Length); @
string s = default(string); ®
string[] a = new string[10]; ®

@ Figyelmeztetés lehetséges null értékre, mert a tipusa szerint nullozhato.

@ Ha egy egyszerl if-fel levizsgaljuk, akkor maris ok. Pedig pl. tobbszali kornyezetben az if
kiértékelése és ezen sor végrehajtasa kozott a valtozo akar null értékre is beirddhat.

® Az el6tte 1év6 rovidzar is megnyugtatja a forditot, igy itt sincs figyelmeztetés.

@ Ezt az el6z6 sor alapjan figyelmeztetéssel jutalmazza.

® Ez is figyelmeztetés, a default operator altal adott értékkel (null) nem inicializalhatunk.

® Ez viszont nem figyelmeztetés, pedig egy csomo null jon létre. Ha ez figyelmeztetés lenne, az

aranytalanul megnehezitené a tombok kezelését.

Lathato, hogy az egyszerlibb eseteket jol kezeli a forditd, de korantsem mindenhato, illetve nem
mindig szol akkor sem, amikor egyébként szdélhatna.

A tovabbi példakhoz vegyunk fel par segédfiiggvényt a Person osztalyba:

42

private Person GetAnotherPerson()

{
return new Person(LastName, FirstName, MiddleName ?? string.Empty);
}
private void ResetFields()
{
FirstName = default!;
LastName = null!;
MiddleName = null;
ks

Lathato, hogy vannak megkertld megolddsok arra, hogy raerészakoljuk a forditora az akaratunkat,
a felkialtojel haszndlataval beirhatunk null értékeket nem nullozhat6 valtozékba (ez az un. null
forgiving operator). Illetve string esetén null helyett hasznalhatjuk az tires string értéket - ami
nem biztos, hogy sokkal jobb a null értéknél. Mindenesetre ezek a fuggvények nem okoznak ujabb
figyelmeztetéseket.

Nézzik meg, hogy mennyire tudja lekovetni a fenti fliggvények miikodését a forditd. Vegylnk fel
ennek tesztelésére egy ujabb fliggvényt a Person osztalyba:

void M(Person p)

{
if (p.MiddleName != null)
{
p.ResetFields();
WriteLine(p.Midd1leName.Length); @
p = GetAnotherPerson();
WriteLine(p.MiddleName.Length); @
}
p.FirstName = null; ®
p.LastName = p.MiddleName; @
}

® A fordit6 nem koveti le, hogy a ResetFields veszélyes mddon valtoztatja az allapotot, csak azt
nézi, hogy az if mar kivédte a veszélyt.

@ Ez egy fals pozitivnak tiing eset, az el6z6 sorban 1évé fliggvény alapjan a p.MiddleName nem
lehetne null, de a forditd csak azt figyeli, hogy a beburkol6 if ellen6rzése a p megvaltozasa miatt
mar nem érvényes.

® Egyértelmiien jogos figyelmeztetés.

@ Jogos a figyelmeztetés, mert nem kezeljiik a p.MiddleName == null esetet.

Strukturatagok esetén is a fals negativ eset jon el6. Probaljuk ki, akar a Person osztalyba irva:

struct PersonHandle

{

43

public Person person;

Nem kapunk figyelmeztetést.

A felkialtojeles raerészakolast a ResetFields-ben lathaté amokfutds helyett inkdbb a fals pozitiv
esetek kezelésére haszndljuk. Javitsuk ki a GetAnotherPerson hivds miatti fals pozitiv esetet az
M(Person) fiiggvényben:

/**/p = GetAnotherPerson();
WriteLine(p.MiddleName!.Length); //bekerilt egy "!'

Figyeljuk meg, ahogy a figyelmeztetés eltlinik.

Ha igazan elkotelezettek vagyunk a null kiirtdsa mellett, akkor bekapcsolhatjuk, hogy minden, a
null kezelés miatti, fordito altal detektalt figyelmeztetés legyen hiba. A projekt beallitasi kozott (a
projekten jobbklikk > Properties), a Build lapon adjuk meg a Treat specific warnings as errors
opcionak a nullable értéket. (Ha tobb értéket akarunk megadni, akkor a ; elvalasztdt
alkalmazhatjuk.)

Ellenérizzik, hogy tényleg hibaként jelennek-e meg az eddigi null kezelés miatti figyelmeztetések.

Mivel ez csak egy példakod, ne javitsuk ki a hibakat, csak tavolitsuk el a projektet a solutionbdl (a
projekten jobbklikk » Remove).

Tuple nyelvi szinten, lokalis fliggvények, Dispose
minta

Tuple nyelvi szinten, lokalis fiiggvények

Készitstink Fibonacci szamsor kiszamolasara alkalmas fliggvényt, ahol hasznaljuk ki az alabbi két
Uj nyelvi elemet. Természetesen nagyon sokféleképpen meg lehetne valdsitani ezt a metodust, de
most kifejezetten a tuple-0k nyelvi tamogatasat és lokdlis fliggvényeket szeretnénk demonstralni.

» Lokalis fuggvények: ezek a fuiggvények csak adott metédusban lathatok. Két esetben érdemes
6ket haszndlni: ha nem szeretnénk ,szennyezni” a kornyezd osztdlyt kulonféle privat
segédmetodusokkal, vagy ha egy mélyebb, komplexebb hivéasi ldncban nem szeretnénk a
paramétereket folyamatosan tovabbpasszolni, ugyanis ezek a metddusok elérik a kiils6 scope-
on talalhato valtozdkat is (a lenti esetben példaul az x-et).

* Value tuple tipus: a tuple (ennes) tobb 0sszetartozo érték dsszefogdsa, ami gyors, nyelvi szinten
tdmogatott adattovabbitast tesz lehet6vé - gyakorlatilag inline, nevesitetlen strukturatipust
hozunk igy létre. Publikus API-kon, fliggvényeken nem érdemes haszndlni, viszont privat, belsd
hasznalatndl sebességnovekedést és API tisztulast érhetiink vele el. Erték tipus.

O Léteznek generikus Tuple<> tipusok is. Ezek referencia tipusok, hasonlé szerepet
w toltenek be, viszont az egyes értékeiket az elég semmitmondod Iteml, Item2...

44

neveken lehet elérni.

static long Fibonacci(long x)

{
(long Current, long Previous) Fib(long i) @®
{
if (i == @) return (1, 0);
var (curr, prev) = Fib(i - 1); @
Thread.Sleep(100); &
return (curr + prev, curr);
}
return x < 0
? throw new ArgumentException("Less negativity please!", nameof(x))
: Fib(x).Current;
}

@ Nevesitett tuple visszatérés. Ez egy lokalis fliggvény, szintaxist tekintve fiiggvényen beliili
fuggvény.

@ Az eredmény eltaroldsa egy tuple valtozoban. Ezzel dekonstrudljuk is, darabokra szedjik a
tuple-t, mert curr, prev valtozén keresztil elérjik a két long alkotorészt. Ugyanezen sorban
torténik a rekurziv hivas is.

® Lassu miivelet szimuldci6ja mesterséges késleltetéssel.

(r) A dekonstrukcios szintaxis a kordbbi gyakorlaton megismert rekord tipusok esetén
- is mikodik.

Dispose minta

A Dispose minta az erdforrds-felszabaditdas megfelel6 megvaldsitdsahoz készilt. Hasonlo elv
mentén uzemel, mint a destruktor, viszont a minta nem feltétlentil kotott az objektum
életciklusanak elejéhez és végéhez. Amennyiben egy objektum megvaldsitja az IDisposable
interfészt, van Dispose metddusa. A metddus meghivdsaval az objektum 4<al hasznalt, nem a
keretrendszer altal menedzselt eréforrasokat szabaditjuk fel. Nem csak memdriafoglaldsra kell
gondolni, hanem lehetnek nyitott fajlrendszeri handle-0k, adatkapcsolatok, stream-ek, vagy uzleti
er6forrasok, tranzakciok.

Mérjik meg az els6é par Fibonacci szam kiszamitasat (a mesterséges késleltetéssel):

var sw = Stopwatch.StartNew();
foreach (var n in Enumerable.Range(1, 15))

{

Console.WriteLine($"{n}: {Fibonaceci(n)}");
}
sw.Stop();

Console.WritelLine($"Elapsed: {sw.ElapsedMilliseconds}");

45

Cons

ole.ReadKey();

Ez igy jo, miikodik, viszont nem ujrahasznosithat6 ez az idomérési mechanizmus.

Készitsink egy sajat idémérd osztalyt StopwatchWrapper néven, ami a Stopwatch haszndlatat

egysze

publ
{

risiti a Dispose mintan keresztul.

ic class StopwatchWrapper : IDisposable
public Stopwatch Stopwatch { get; }
public string Title { get; }

public StopwatchWrapper(string? title = default)

{
Title = title 7?7 Guid.NewGuid().ToString();
Console.WriteLine($"Task {title} starting at {DateTime.Now}.");
Stopwatch = Stopwatch.StartNew();

}

Ha kérjuk a villanykorte segitségét az IDisposable-0n, akkor 2x2 lehetdségiink van: megvaldsitjuk az
interfészt implicit vagy explicit, illetve megvalositjuk-e az interfészt a Dispose mintat alkalmazva.
Valdsitsuk meg implicit a Dispose mintat!

[T

- =

public class StopwatchWrapper : IDisposable

Implermnent interface ﬁ 50535 “
£ Implement interface with Dispose pattern
]] ..
Implement interface explicitly #region IDisf
private bool

-3 Implement interface explicitly with Dispose pattern

| Generate constructor 'StopwatchWrapper()'

protected wir

i

Fussuk at a generdlt kddot, ami szépen kommentezett. A pattern lényege, hogy a nem menedzselt
er6forrasokat (unmanaged objects / resources) szikséges felszabaditanunk, amit a Dispose
metodusokban, illetve menedzselt kod esetén a kommentekkel Kkijelolt helyen érdemes
elvégeznunk. Készitsiik el az idémérd mechanizmust!

/**/
/*%/
/**/
/**/
/**/
/**/

46

protected virtual void Dispose(bool disposing)
{
if (!disposedValue)
{
if (disposing)
{
Stopwatch.Stop();
Console.WriteLine(
$"Task {Title} completed in { Stopwatch.ElapsedMilliseconds} ms "+
$"at { DateTime.Now}");

/x%/ }

/**/ disposedValue = true;
/*%/ }

/**/}

Csak felugyelt er6forrasokkal (managed objects) dolgozunk, igy csak egy helyen kellett a leallito
logikat megadnunk.

Az IDisposable interfészt megvalosito elemekkel haszndlhatjuk a using konstrukciot:

using (new StopwatchWrapper("Fib 1-15"))

{
foreach (var n in Enumerable.Range(1, 15))
{
Console.WriteLine($"{n}: {Fibonacci(n)}");
}
}

Tehat a using hasznalataval a blokk elejét és végét tudjuk kezelni. Gyakorlatilag egy try-finally-val
ekvivalens a minta, a finally-ben meghivddik a Dispose metodus.

Jelenleg csak a folyamat végén kapunk jelentést az eltelt id6r6l. Résziddk kiirdsdhoz készitsiink egy
segédfiggvényt a StopwatchWrapper-be:

public void Snapshot(string text) =>
Console.WriteLine(
$"Task {Title} snapshot {text}: {Stopwatch.ElapsedMilliseconds} ms"
o

Hivjuk meg a foreach ciklusbol:

/**/using (

var sw =
/*¥*/ new StopwatchWrapper("Fib 1-15"))
/**/{
/**/ foreach (var n in Enumerable.Range(1, 15))
J**/ {
sw.Snapshot(n.ToString());
/**/ Console.WriteLine($"{n}: {Fibonaceci(n)}");
/*%) }
/**/}

47

Entity Framework Core I-II.

Az Entity Framework leképezési modszerei

Az objektum-relacios (OR) leképzés (mapping) két 6 részbdl all: az egyik az adatbazis séma, a masik
pedig egy menedzselt kodbéli objektummodell. Esetiinkben a C# kodban 1évd osztalyokat képezziik
le adatbdzisbeli objektumokkd, ezt hivjuk Code-First mapping moddszernek. A masik irdny is
lehetséges, ha mar van egy adatbazis sémank, akkor azt is leképezhetjiikk Code-First modellé. Ezt a
folyamatot Reverse Engineered Code-Firstnek vagy scaffoldingnak hivjuk (ez utobbival nem
foglalkozunk ezen gyakorlat keretében).

Akérhogy is, az Entity Framework Core (EF) mint OR leképez6 eszkoz (ORM) haszndlatdhoz az
alabbi dsszetevOkre van sziikség:

* objektummodell kddban

* reldcios modell az adatbazisban

* leképezés (mapping) az el6bbi kettd kozott, szintén kodban megadva

* maga az Entity Framework Core, mint (NuGet) komponens

» Entity Framework Core kompatibilis adatbazis driver (provider)

adatbazis kapcsolodasi adatok, connection string formatumban

A Code-First leképezési modszer

A Code-First modszer lényege, hogy els6ként az OO entitdsokat definidljuk egyszeriien
programkodban, majd a leképezést szintén programkodban. A leképezés alapjan az EF eszkozok
képesek az adatbazis létrehozdsara, inicializalasara és a séma valtozaskovetésére is (1asd lentebb a
Code-First Migrations részt).

Az entitasok definialasa

Készitsink egy .NET 6 konzolos alkalmazast (csak ne EF legyen a neve), majd a projekten belil
hozzunk létre egy Entities nevlil mappat. Adjunk hozza a mappahoz egyszert osztalyokat az alabbi
sémanak megfelelden:

* Product (Id: int, Name: string, UnitPrice: int)

e Order (Id:int, OrderDate: DateTime)

» Category (Id: int, Name: string)

Az osztalyok legyenek publikusak, az attributumok pedig egyszerli auto-implementalt propertyk
(prop snippet).

A string tipusu property-k esetén figyelmeztet a forditd, hogy nem nullozhatd referencia tipusu
property inicializacio utan is null értéki lehet. Ennek kivédésére az ajanlott moddszer olyan
konstruktor irdsa, ami az ilyen propertyk kezdeti értékét paraméterben megkapja és beallitja.

48

https://docs.microsoft.com/en-us/ef/core/managing-schemas/scaffolding
https://docs.microsoft.com/en-us/ef/core/managing-schemas/scaffolding
https://github.com/dotnet/efcore/issues/8035
https://github.com/dotnet/efcore/issues/8035

A konstruktort az EF is fogja hivni, neki automatikusan tudnia kell, hogy melyik
paraméter melyik tulajdonsagot allitja - pedig ez a konstruktor szignaturajabol

A alapesetben nem kikovetkeztethet. Emiatt 6nkéntesen tartanunk kell magunkat
ahhoz, hogy a konstruktorparaméter nevének és a property nevének egyeznie kell,
kivéve, hogy a paramétere neve kezd6dhet kisbettivel is (camel casing).

Példaként igy néz ki a Product konstruktor:

public Product(string name)

{
Name = name;
}
A Visual Studio Quick Action-ként fel szokta ajanlani a Generate constructor
O [konstruktorfejléc] vagy Add parameter to [konstruktorfejléc] gyors
- kodgeneralasi lehetdségeket, amivel 1étrehozhatjuk vagy bévithetjik a sziikséges
konstruktort.

Mapping és egyéb metaadatok megadasa I.

Eddig megadtuk az entitas nevét, a relacids attributumok nevét és tipusat, azonban ezen felil még
sok mindent lehet/kell megadni: az entitas els6dleges kulcsa, idegen kulcsok, reldciok, kényszerek
és egyéb mapping informacidok (pl. hogy mi legyen a reldcidos attributum oszlopneve az
adatbazisban). A Code-First stratégia kétfajta modszert is kindl ezek megadasara. Az egyik modszer,
hogy C# attributumokat helyeziink az entitdsosztalyok kiilonb6z8 részeire, a masik, hogy un. fluent
jellegli kddot alkalmazunk. Ez utobbi mddszer els6re furcsdn néz ki, de tobbet tud (van, amit
attributummal nem lehet megadni).

A fenti két modszert kiegésziti a konvencio alapu konfiguracio, amikor az EF a rendelkezésekre allo
adatokbdl automatikusan kovetkezteti ki a metaadatokat: példaul gyakori, hogy az elsédleges kulcs
neve tartalmazza az id szoveget. Az EF tehat a konvencio alapjan kitaldlhatja, hogy melyik ez
elsddleges kulcs oszlop. Ha valamit rosszul taldlna ki, vagy valtoztatni akarunk a kitalalt neveken,
akkor azt az attributumos vagy a fluent megadassal tehetjik meg.

(r) A Klasszikus EF6-ban sajat konvencidkat is megadhatunk, viszont Core-ban még
- nem.

Els6ként azt fogjuk megnézni, hogy mit talal ki az EF, ha semmi plusz adatot nem adunk meg.
Relaciok

A 16 entitasok kozotti kapcsolatokat mutatja sematikusan az aldbbi dbra:

49

https://github.com/aspnet/EntityFrameworkCore/issues/214

= Properties
ot Id
& Name

=l Navigation Properties

2
&
3

= Properties
& Categoryld
& Name = properties
& UnitPrice o ¢ o Id
= Navigation Properties | * * & OrderDate
y2! Categories = Mavigation Properties
¥l Orders v= Products
I e

A relaciokat idegen kulcs propertyk és navigdcids propertyk reprezentdljak. Az idegen kulcs
propertyk tipusa a kapcsolat masik végén 1évl entitds kulcsdnak tipusa. A navigacios propertyk
tipusa pedig a kapcsolat masik végén 1évQ entitas tipusa vagy ilyen tipusu kollekcio.

Egy konkrét kapcsolat esetében: a Product-Category egy-tobbes kapcsolathoz egy idegen kulcs
property és egy navigacios property tartozik a Product osztalyban és egy kollekcio tipusu navigacids
property a Category-ban. A toébbes navigacios property-k legyenek csak olvashatok és a tipusuk
legyen ICollection<>.

Altaldnossadgban nem kotelezé egy kapcsolat mindkét oldalan navigaciés property-
r . o sz iz , P
O t felvenni, de erdsen javasolt és mindig jo, ha van. Az entitdson végzendd6

miveleteket egyszerusiti, illetve a konvencios logika is kovetkeztet bel6le.

A navigacios propertyk referencia tipusuak, igy foglalkoznunk kell a nullozhatosag kérdésével. Ha a
kapcsolat modellezési szempontbol nem kotelez6 (példdul ha nem varnank el, hogy minden
terméknek legyen megadva a kategdriaja), akkor a navigacids property tipusa is legyen
értelemszerien nullozhatd. Ha a kapcsolat kotelezd, akkor az ajanlott eljards, hogy a navigacids
property tipusa ne legyen nullozhat6 - viszont ekkor kezdeti értéket kell adnunk. Gyakori eset, hogy
egy entitast betoltink adatbazishol, de a hozza kapcsolddd entitas(oka)t nem, ilyenkor mégis a null
érték lenne a megfeleld. Emiatt az egyik ajanlott modszer, ha a propertyt null forgiving operatorral
inicializaljuk null értékre. Példa: public Category Category { get; set; } = null!;.

Az Order-Product tobb-tobbes kapcsolatokhoz hozzuk l1étre a kapcsolotdblanak megfeleld entitast is,
ami egy-egy Product és Order kozotti kapcsolatot reprezentalja.

* OrderlItem (Id: int, ProductId: int, OrderId: int, Quantity: int)

50

Q

Nem kotelezd 1étrehozni osztalyt a kapcsoldtablanak, konfiguracioval is lehet érni,
hogy a kapcsolotabla 1étrejojjon és az EF megfelelden haszndlja. Ezt a modszert
akkor érdemes kovetni, ha a kapcsoldtabla csupan technikai tehertétel, de ha
példaul extra adatot is tarol, esetiinkben a rendelt mennyiséget (Quantity), akkor
jobban kovethet6 kodot eredményez, ha explicit létrehozzuk a kapcsolétablanak
megfelel6 entitastipust.

Az igy kialakult modell (konstruktorok nélkiil):

)' Products : ICollection<Product>

Koédként:

a A e :
Category A Order A
Class Class
4 Properties 4 Properties
}' Id { get; set; } :int }‘ Id { get; set; } : int
y“ Name { get; set;] : string }‘ OrderDate { get; set; } : DateTime
i - - K. ~
& Category A Order

}' Orderltems : ICollection<Orderltem:

p

o ™ o ™
A A
peduct)’ ProductOrders : ICollection<Orderltem > I
Class -~ Class
4 Properties)’ Product 4 Properties
A Categoryld { get; set; } :int - A Id{get set;}:int
f Id { get; set; } :int f Orderld { get; set; } : int
/& Name { get; set;} : string A Productld { get; set: } s int
}‘ UnitPrice { get; set; } :int f“ Quantity { get; set } :int

.

public class Category

{

public int Id { get; set; }
public string Name { get; set; }
public ICollection<Product> Products { get; }

= new List<Product>();

public Category(string name)

{

Name = name;

public class Order

{

public int Id { get; set; }
public DateTime OrderDate { get; set; }
public ICollection<OrderItem> OrderItems { get; }

= new List<OrderItem>();

public class Product

{

public int Id { get; set; }

31

https://docs.microsoft.com/en-us/ef/core/modeling/relationships?tabs=fluent-api%2Cfluent-api-simple-key%2Csimple-key#many-to-many

Vegyuk észre, hogy eddig semmilyen EF specifikus kddot nem irtunk, a modelliink sima un. POCO

}

public string Name { get; set; }
public int UnitPrice { get; set; }
public int CategoryId { get; set; }
public Category Category { get; set; } = null!;
public ICollection<OrderItem> ProductOrders { get; }
= new List<OrderItem>();
public Product(string name)
{

Name = name;

}

public class OrderItem

{

public int Id { get; set; }

public int ProductId { get; set; }

public Product Product { get; set; } = null!;
public int OrderId { get; set; }

public Order Order { get; set; } = null!;
public int Quantity { get; set; }

osztalyokbal all.

Kapcsolat az adatbazissal

DbContext - NuGet

Az entitadsokat definidltuk, a mapping-et az EF eszére biztuk, a kovetkezd 1épés az adatbazisséma
létrehozasa a mapping alapjan, amit képes az EF migracios eszkdze megoldani. Miveletet az un.
kontext-en keresztiil tudunk végezni. Frdemes sajat kontext tipust létrehozni, amit az alap DbContext
-b6l szarmaztatunk. Eddig még nem is irtunk semmilyen EF specifikus kodot, most viszont mar kell
a DbContext tipus, igy NuGet-b6l hozza kell adnunk a Microsoft.EntityFrameworkCore.SqlServer
csomagot. Nem ez a csomag tartalmazza a DbContext-et, viszont fliggdségként hivatkozza

(Microsoft.EntityFrameworkCore).

32

0

A

NuGet csomagok telepitéséhez segitség a dokumentacioban.

Olyan csomagokndl, ahol a verzioszamozas koveti az alap Kkeretrendszer
verzioszamozdasat, torekedjink arra, hogy a csomagok verzidi konzisztensek
legyenek egymassal és a keretrendszer verzidjaval is - akkor is, ha egyébként a
fliggbségi szabalyok engednék a verziok keverését. Ha a projektiink példdul .NET
6-0s keretrendszert haszndl, akkor az Entity Framework Core és egyéb extra
ASP.NET Core csomagok kozul is olyan verziot valasszunk, ahol legalabb a f6verzio
egyezik, tehat valamilyen 6.x verziot. Ez nem azt jelenti, hogy az inkonzisztens
verziok mindig hibat eredményeznek, inkabb a projekt altaldban stabilabb, ha a
féverziok kozotti valtast egyszerre, kilon migracios folyamat (példa) keretében

https://stackoverflow.com/a/250006/472575
https://docs.microsoft.com/en-us/nuget/quickstart/install-and-use-a-package-in-visual-studio#nuget-package-manager
https://learn.microsoft.com/en-us/aspnet/core/migration/31-to-60

végezzuk.

Az Entity Framework onmagaban fliggetlen az adatbazis implementacioktol, azokhoz kilénbo6zd,
adatbazisgyarto-specifikus adatbdzis providereken keresztil kapcsolodik. A
Microsoft.EntityFrameworkCore.SqlServer csomag hivatkozza az EF absztrakt reldcids
komponensét (EntityFrameworkCore.Relational), és tartalmazza az MS SQL Server-hez tartozo
providert. A providert a DbContext OnConfiguring metodusaban adhatjuk meg, esetiinkben a
UseSqlServer metodussal, ami egy connection stringet var.

MS SQL Server helyett a LocalDB nevi fejleszt6i adatbdazist hasznaljuk, mely fejleszt6i szempontbol
gyakorlatilag megegyezik az MS SQL Server-rel. A LocalDB a Visual Studio-val egylitt telepil,
minden Windows felhasznalonak kilon LocalDB példany indithato el. A Visual Studio az SQL Server
Object Explorer ablak megnyitdsakor automatikusan létrehozza a felhasznalonkhoz tartozo,
MSSQLLocalDB nevi példanyt.

A LocalDB kiulon is letolthetd, illetve a vele egytitt teleptild sqllocaldb parancs
O segitségével egyszerlien kezelhet§. Minderr6l bdvebb informdacié a
dokumentdacidban olvashato.

Adjunk hozzd 4j osztdlyt a projekthez NorthwindContext néven, ebben definidljuk majd, hogy milyen
entitaskollekciokon lehet miiveleteket végezni.

Az automatikusan 1étrejové MSSQLLocalDB nevd LocalDB példany connection stringjét adjuk meg,
pontosabban az SQL Server Object Explorer ablak segitésével masoljuk ki: SQL Server-t kibontva >
(localdb)\ MSSQLLocalDB-n jobbklikk > Properties » Connection String. A kimdsolt stringben az
Initial Catalog értékét (a DB nevét) a master-rdl valtoztassuk meg valamilyen mds névre, példaul a
Neptun kodunkra. Ha nincs a stringben Initial Catalog rész, akkor irjuk a string végére, hogy
;Initial Catalog=neptunkod.

E'ﬂ SOL Server Object Explorer - Microsoft Visual Studio *
File Edit View Project Build Debug Team Tools Test ReSharper Analyze

. |elﬁ,cr d"'| . - P Attach.. ~ | j

SCL Server Object Explorer
¢l E
4 ¥ SOL Server
[@ (localdbM550LLocalDE (SCL Server 1
[Cﬁ EEEECEEE EEEE m (SO
Projects Allow SCL/CLR Debugging

Xoq|oo| SRR

Application Debugging

JETLT e WETNETS

Mew Query...
Disconnect
Rename
Refresh
Properties

E
Il_
LA
il
4
m
=
(]
=
m
m
-+
m
]
=
=]
=
m
e

33

https://docs.microsoft.com/en-us/ef/core/providers/
https://www.microsoft.com/en-us/sql-server
https://docs.microsoft.com/en-us/sql/tools/sqllocaldb-utility?view=sql-server-ver15

A connection stringben kulonleges karakterek (pl. '\') vannak. Ha a kimdsolt
connection stringet két " kozé illesztjik be, a VS automatikusan escape-eli a

A kilonleges karaktereket. Ellenkezd esetben (ha pl. a két " a beillesztés utan kertil
elhelyezésre a szoveg koré) az automatikus escape-elés nem torténik meg, ilyenkor
ne felejtsiik el a @-ot a string elé irni, vagy manudlisan escape-elni a sziikséges
karaktereket!

public class NorthwindContext : DbContext
{

protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)

{

optionsBuilder.UseSqlServer("<connstring>");

}

public DbSet<Product> Products => Set<Product>();
public DbSet<(Category> Categories => Set<Category>();
public DbSet<Order> Orders => Set<Order>();

A nagyobb rugalmassag érdekében érdemes a connection stringet konfiguracios
O fajlba helyezni, majd az ASP.NET Core konfiguracios megoldasaival felolvasni. Erre
egy késdbbi gyakorlaton nézunk példat.

A DbSet<> tipusu tulajdonsdgoknak latszolag csak kényelmi funkciéjuk van, a
Set<>() fluggvényhivasokat egyszer(sitik, azonban val6jdban nagyobb a
jelentdségik. Tobbek kozott ezek alapjan deriti fel az EF, hogy melyek az

(;) entitdsosztalyok, hiszen alapvetfen nincsen semmilyen megkilonboztetd
jellemzGjuk. Alapvetfen a DbSet<> tipusu property-k tipusparaméterei és az igy
felderitett entitastipusokban 1évd navigacios propertyk tipusa alapjan all 6ssze az
entitastipusok kore.

Az elsd verzios adatelérési (DAL) rétegunk ezzel kész is van.
Sémamodositas

Code-First Migrations

A kddban tortén6 sémamodositasokat kovetni tudja a Kkeretrendszer, és a valtozasok alapjan
frissiteni tudja az adatbazis sémajat lefele, illetve felfele iranyban is. Ezt a mechanizmust nevezzik
migracionak. Esetiinkben a séma nullardl felhuzdasa is mar mdédositasnak szamit.

A migrdacid elvégzésére parancssoros utasitasokat kell igénybe vennunk. Itt kétfajta megkozelités is
adott: vannak PowerShell és vannak klasszikus cmd (dotnet cli) parancsaink. Fel kell telepitsiik a
projektunkbe valamelyik NuGet csomagot:

» PowerShell: Microsoft.EntityFrameworkCore.Tools (telepitsiik fel most ezt)

54

» Parancssor: Microsoft.EntityFrameworkCore.Tools.DotNet

Hozzuk el6 a Package Manager Console-t. (Tools » NuGet Package Manager > Package Manager
Console). Ellendrizzuk, hogy a Default Project legordilében a mi projektiink van-e kivalasztva. Az
Add-Migration <név> paranccsal tudunk késziteni egy Uj migracios 1épést, igy az els6 migracionk a
kiindul6 sémdank migraciojat fogja tartalmazni.

Add-Migration Init

Figyeljik meg, mit generalt a projektiinkbe ez a parancs. Itt a migraciohoz egy osztalyt készit, ami
tartalmazza azokat az utasitdsokat (Up fuggvény), amikkel a modelliinknek megfelel6 tablakat fel
lehet venni. Emellett kilon fiiggvényben (Down) olyan utasitdsok is vannak, melyek ugyanezen
tablakat eldobjak.

Forditas utan adjuk ki az Update-Database parancsot, amivel egy adott migracios allapotig probalja
frissiteni a sémat. Ha nem adunk meg sémanevet akkor a legfrissebb migracioig frissit:

Update-Database Init

Bizonyos LocalDB verzidokndl hibdra futhat az adatbazislétrehozds (CREATE FILE
encountered operating system error 5(Access is denied.)), mert rossz helyen prébdlja
létrehozni az adatbazisfajlt. Ilyenkor az SQL Server Object Explorer ablakban

A bontsuk ki a LocalDB példanyunk, alatta a Databases mappan jobbklikk > Add
New Database. A megjelend ablakban adjuk meg névként ugyanazt az
adatbdazisnevet, amit korabban a connection string-ben a master helyett
megadtunk.

Ellenérizzik le az adatbdazis sémadajat az SQL Server Object Explorer ablakban. Nézzik meg, hogy
pusztan konvenciok alapjan milyen tulajdonsdgokat talalt ki az EF.

Kodbol is legenerdlhatndnk az adatbazist az aktudlis sémadaval a
(r) DbContext.Database.EnsureCreated metodus segitségével, viszont ez a késébbiekben
- megneheziti a tovdbbi sémamddositast, mivel mindig el kellene dobjuk az
adatbazist, illetve a migraciot sem konnyu utolag bevezetni.

Leképezés és egyéb metaadatok megadasa II. — fluent és attributum alapua
leképezés

Definialjuk felil a kontextiinkben az &s OnModelCreating metddusat és itt allitsunk be par mapping

informaciot.

protected override void OnModelCreating(ModelBuilder modelBuilder)

{
base.OnModelCreating(modelBuilder);

55

modelBuilder.Entity<Category>()
.Property(c => c.Name)
.HasMaxLength(15);

Ezzel a Name property hosszat allitottuk be.

G Az OnModelCreating fiiggvényben hivatkozott tipusokat is figyelembe veszi az EF az
- entitastipusok felderitésekor.

A fluent mellett probaljuk ki az attributumos konfiguréciét is. Allitsunk at egy oszlopnevet a Product
osztalyban a Column attributummal.

[Column("ProductName")]
public string Name { get; set; }

(r') A fenti miatt az entitdsmodellink mar nem POCO, mert EF specifikus attributum
- jelent meg a kddjaban.

Frdemes megfigyelni a tdblanevek kapcsén, hogy eleve tobbesszamositott neveket
O taldlunk az adatbazisban. Ezt az IPluralizer service végzi, melyhez sajat
-
implementacid is irhato.

Mivel mar létezik az adatbazisunk, migracio segitségével kell frissitsik az adatbazis sémajat.
Készitstink egy Uj migracios 1épést az Add-Migration utasitdssal és frissitsik a sémat az Update-
Database paranccsal.

Add-Migration CategoryName_ProductName
Update-Database CategoryName_ProductName

= Megnézhetjik az adatbdzison futtatott SQL-t is a Script-Migration paranccsal.
Q Példaul ez mutatja a legutébbi modositast érvényesitd SQL-t: Script-Migration
-From Init

Természetesen mivel még nincsenek adataink az adatbazisban, akar el is
dobhatnank az adatbdzist és ujra legenerdlhatndnk nulldrol a sémat, de most

O kifejezetten a migraciot szeretnénk gyakorolni. Az Add-Migration kimenete
figyelmeztet, hogy adatvesztés is torténhet. Vannak veszélyes migracids miiveletek,
ezért érdemes atnézni a generalodo migracios kodot.

Ha valamilyen okbdl nem megfelel§ a migracionk, ne toroljik kézzel a generdlt C#
A kodfajlokat. Haszndljuk helyette a Remove-Migration parancsot (mindenfajta
paraméter nélkil), ami a legutobbi migraciot torli.

Nézzik meg, milyen migracids osztalyt generdltunk, és hogy ez milyen utasitdsokat tartalmaz.

36

https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-2.0#pluralization-hook-for-dbcontext-scaffolding

Ellenérizzik, hogy a Name oszlop most mdr az uj kényszereknek megfelelen lett-e felvéve, és hogy
a terméknév oszlop neve is megvaltozott-e.

Ezzel kész a DAL rétegunk konfiguracioja, egyuttal mindent kipipaltunk az anyagrész elején 1évo
felsorolasbol.

Adatbazis naplozas

A kovetkezd feladat konnyebb Lkovethetfsége érdekében dllitsuk be a napldézast az Entity
Framework kapcsan. A kontext osztalyba:

/**/protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)

/**/{

/**/ optionsBuilder.UseSqlServer("<connstring>") // ; tordlve
.LogTo(Console.WriteLine, LoglLevel.Information);

/**/}

Ha nem a konzolt szeretnénk teleszemetelni, akkor akar a Debug kimenetre
(;) (Output ablak) is irhatunk. Ehhez a LogTo-nak adjuk meg paraméterként a m =
Debug.WriteLine(m) delegatot.

Beszuras

frjunk egy egyszer(i beszuré kédot a Program.cs-be. Varjunk paraméteriil egy kontext-et, és csak
akkor szurjunk be az adatbazisba barmit, ha még tres.

static void SeedDatabase(NorthwindContext ctx)

{
if (!ctx.Products.Any())
{
var cat_drink = new Category("Ital");
var cat_food = new Category(“Etel");
ctx.Categories.Add(cat_drink);
ctx.Categories.Add(cat_food);
ctx.Products.Add(new Product("Sor")
{ UnitPrice = 50, Category = cat_drink });
ctx.Products.Add(new Product("Bor")
{ Name = "Bor", Category = cat_drink });
ctx.Products.Add(new Product("Tej")
{ Name = "Tej", Categoryld = cat_drink.Id });
ctx.SaveChanges();
}
}

Figyeljuk meg, hogy kevertiik a kapcsolatok bedllitdsanal a navigacios property szerinti, illetve a
sima Id érték beallitast.

57

Hivjuk meg a legfels6 szintli kédbol és probaljuk meg lekérdezni az els6 terméket. Rakjunk a kod
végére egy Console.ReadKey-t, hogy legyen id6nk megnézni a naplot.

using var ctx = new NorthwindContext();
SeedDatabase(ctx);
var p = ctx.Products.FirstOrDefault();

Console.ReadKey();

Prébaljuk ki! Hibdra fut, mert beszurasndl az Id értékes hivatkozds alapértelmezett int, azaz 0
értékl lesz, hiszen a kategoria is Uj. Az Uj elemeknél gyakori, hogy az adatbazis osztja ki az
els6dleges kulcs értéket, addig az alapértelmezett értékd. Konvenci6 szerint a mi Id oszlopaink is
ilyenek lesznek (un. IDENTITY oszlopok). A termék beszurasakor viszont a 0 érték mar nem lesz
helyes, hiszen addigra a kategoria kapott valamilyen kulcs értéket. Mindezt a problémat navigacios
property-s hivatkozassal elkertiilhetjuk.

Figyeljuk meg a konzol naploban, hogy a Category beszurasa még megtorténik, de
(;) az egyik Product hozzdaddsa madr elszdll. A debuggerrel, ha megdllunk a
SaveChanges hivason, akkor lathato, hogy a CategoryId property értéke nulla.

Figyeljuk meg azt is, hogy a SaveChanges hivdsig nem torténik modosito
O adatbazismiivelet. Az EF memoridban gytjti a valtozasokat, amiket a SaveChanges-

v szel szinkronizalunk az adatbazisba.
Itt lathatjuk az alapértelmezett tranzakciokezelés miikodését is. Egy hivasban tobb
O elemet Kkell beszurni, ha barmelyik miivelet meghiusul, akkor semmilyen valtozas
- nem érvényesiil az adatbazisban. Altaldnosan igaz, hogy egy SaveChanges vagy
minden valtozast érvényesit vagy semmit sem.
Javitsuk ki:

/**/ctx.Products.Add(new Product("Tej")
/**/ { Name = "Tej",
Category = cat_drink //navigacios property-re valtottunk
/**/ 1);
/**/ctx.SaveChanges();

Ennek mar le kell futnia. Nézziik meg a konzolon az SQL utasitdsokat és a valtozdsokat az
adatbazisban. Paraméterezett INSERT utasitdsokat haszndl az EF, igy elkeriuilve az SQL injection
tdmadast.

A hattérben az EF minden Uj entitdsnak kioszt egy atmeneti azonositot, amit
(f) felhaszndlhatunk a fenti hiba elkeriilésére, ha semmiképp sem akarjuk a

- navigaciés property-ket hasznalni. Igy tudndnk a context-t6l elkérni:
ctx.Entry(cat_drink).Property(e = e.Id).CurrentValue

38

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql-identity-property

Ha egyszerre tobb egymadsra hivatkozo elemet szurunk be és azonosité alapjan

A kotjuk 6ket 0ssze, mindig gondoljuk at, hogy a tényleges adatbazisbeli azonositok
biztosan rendelkezésre dllnak-e, mert killonben futasideji kivételt kaphatunk, a
fordité nem fog figyelmeztetni.

rr

Osfeltoltés (seeding) elvart adattartalom megadasaval

A kontextuskonfiguracidé részeként megadhatjuk, hogy milyen adattartalmat szeretnénk az egyes
tablakban latni. A kontext OnModelCreating fliggvényének végére:

modelBuilder.Entity<Category>().HasData(
new Category ("Ital") { Id =1}
E

model1Builder.Entity<Product>().HasData(
new Product("Sor") { Id = 1, UnitPrice
new Product("Bor") { Id = 2, UnitPrice
new Product("Tej") { Id = 3, UnitPrice

50, CategoryId =1 },
550, CategoryId = 1 },
260, Categoryld =1 }

)

Fontos, hogy ezen modszer esetén mindenképp kézzel meg kell adnunk az els6dleges kulcs
értékeket. Forditds utdn generaltassunk uj migraciot és frissitsiik is az adatbazist - ez utébbi hibara
fog futni:

Add-Migration Seed
Update-Database

A HasData alapjan generalt migracids kod nem veszi figyelembe az idékozben bekertilt adatokat,
csak a modellt és a tobbi migracidt nézi. Ha megnézziik a generalt kodot, lathatjuk, hogy csak sima
beszurasok. Mivel mi kozben jol dsszeszemeteltik az adatbdzist, a migracié altal kiadott beszuro
miveletek j6 eséllyel hibara futnak.

Ha szeretnénk tiszta lappal indulni, barmikor kipucolhatjuk az adatbazist a specidlis nullas
migraciora valg frissitéssel, majd ujrahuzhatjuk a HasData-nak koszonhet6en kezdeti adatokkal
Osfeltoltve.

Update-Database 0
Update-Database

Ezek utan a SeedDatabase hivasra nincs sziikség, kommentezzik ki.

Lekérdezések

Minden rész utdn az el6z6 szakasz kodjat kommentezziik ki, hogy ne keltsen felesleges zajt a
kimeneten az eldz6 utasitas, illetve ne legyenek felesleges mellékhatasok.

39

Kérdezziik le azoknak a termékeknek a nevét, melyeknek neve egy adott bet{it tartalmaz:

//SeedDatabase(ctx);
//var p = ctx.Products.FirstOrDefault();

var q = from p in ctx.Products
where p.Name.Contains("6")
select p.Name;

foreach (var name in q)

{

Console.WriteLine(name);

Itt figyelhetd meg a kordbban mdr targyalt IEnumerable<> - IQueryable<> kiilonbség. A Products
property tipusa DbSet, ami IQueryable<>. Az IQueryable<>-en torténd hivasok kifejezésfat (
Expression) épitenek és szintén IQueryable<>-t adnak vissza. A q értéke egy olyan IQueryable<>, ami
Expression-jében tartalmazza a teljes lekérdezést. Amikor sziikség van az adatra, a Kkifejezésfa
alapjan SQL generalddik és ez az SQL fut le az adatbdzison.

A debuggerrel 1éptessiik 4t az egyes utasitasokon a program futasat. A késleltetett kiértékelés miatt
csak a foreach végrehajtasa kozben fog az adatbazishoz fordulni az EF, hiszen csak ekkor van
ténylegesen sziikség az adatra. Nézzik meg a lefuttatott SQL-t is. Sikerult az IQueryable<>-ben
taldlhato Expression-t SQL utasitassa alakitania.

Az EF elég sok C# fluggvényt SQL-1é tud forditani. Példaképp alakitsuk a visszaadott nevet
nagybetlissé

/**/var q = from p in ctx.Products

/**/ where p.Name.Contains("6")
/**/ select p.Name
.ToUpper();

Figyeljik meg a konzolon a generalt SQL-t: a projekcios részbe bekertilt az UPPER SQL figgvény.

Vegyes kiértékelés

A fak sem noének az égig, az EF sem tud minden C# fliggvényt SQL-1é forditani. Probaljuk ki ugy,
hogy a Contains-t karakterrel hivjuk meg a szlirésben.

var q = from p in ctx.Products
where p.Name.Contains('0")
select p.Name;

InvalidOperationException-t kapunk: ezt a lekérdezést nem tudja a provider SQL-1é forditani. Egyik
lehet6ségiink, ahogy a hibatlizenet is irja, hogy kikényszeritjik a kiértékelést a nem lefordulo
mivelet elé helyezett AsEnumerable vagy Tolist (illetve ezek aszinkron valtozatai) hivassal.

60

Probaljuk ki - mivel a szlirést nem sikerult atforditani, a szlirés elé a from végére tegyik az
AsEnumerable-t:

/**/var q = from p in ctx.Products //ez még LINQ-to-Entities

.AsEnumerable()
/**/ where p.Name.Contains('6"') //ez mar LINQ-to-Objects
/**/ select p.Name.ToUpper();

Ez miikodik, de a konzolon megjelend SQL utasitdson latszik, hogy a teljes termék tablat
lekérdeztik és felolvastuk a memoridba. Az AsEnumerable jelentése: a lekérdezés innent6l LINQ-to-
Objects-ként épul tovabb, a lekérdezés eddigi részének memdriabeli reprezentacidja lesz az
adatforras, tehdat a szlirés és a projekcio mar memoridban fut le. Mivel a teljes lekérdezés egy része
LINQ-to-Entities (adatbdzis értékeli ki), a masik része LINQ-to-Objects (a .NET runtime értékeli ki),
az ilyen lekérdezéseket un. vegyes kiértékelésiinek (mixed evaluation), a LINQ-to-Objects részt
kliensoldali kiértékeléstinek (client evaluation) nevezik. A q tipusa ebben az esetben mar nem
IQueryable<>, csak IEnumerable<>.

Frdemes Osszevetni a where operator definicidjat (kurzorral raallva F12 vagy
(r') jobbklikk > Go To Definition) a két valtozatnal. Az els6 esetben IQueryable az
- adatforras és Expression a feltétel, a masodiknal IEnumerable az adatforras és sima
delegate a feltétel.

g Kilonosen fontos, hogy lehet6leg minden EF lekérdezésiinket ellen6rizziik le, hogy
minden része ott fut-e le (adatbazisbhan vagy memoridban), ahol szamitunk ra.

Masik lehet6ség, ha ilyenbe ttkoziink, hogy a lekérdezést megprobaljuk ugy atirni,
O hogy minél nagyobb része lefuttathato legyen adatbazisban. Ez a konkrét példaban
- egyszerd, csak vissza kell irni az elsd valtozatot.

Lekérdezések osszefilizése és cimkézése

Kérdezzuk le egy bizonyos arndl dragabb, bizonyos betlit a neviikkben tartalmazo termékek nevét -
mindezt két killon lekérdezésben:

var q = from p in ctx.Products.TagWith("Névsziirés")
where p.Name.Contains("r")
select p;

var g2 = from p in g
where p.UnitPrice > 20
select p.Name;

foreach (var name in q2)

{

Console.WriteLine(name);

61

A TagWith hasznalataval konnyebben megtalalhatjuk a lekérdezés dltal generalt SQL utasitast a
naploban: a fliggvénynek megadott szoveg kozvetlentl a generalt utasitas elé kertl.

Ismét figyeljik meg a naploban, mikor fut le és milyen lekérdezés. Itt is latszik a késleltetett
kiértékelés és a lekérdezések dssze lesznek flizve, egy lekérdezés hajtodik végre.

Ez ramutat az EF egy nagy elényére: bonyolult lekérdezéseket megirhatunk kisebb,
(;) egyszerilbb részletekben, az EF pedig 0sszevonja, s6t optimalizalhatja is a teljes
lekérdezést.

Probaljuk ki, var q = helyett IEnumerable<Product> q =-val is, ilyenkor nem fiizi 6ssze a lekérdezést.
A g2 miveletei mar memoridban fognak lefutni, hiszen a q2 adatforrasként csak egy IEnumerable-t
1at.

Probdljuk ki, var q = helyett IQueryable<Product> q = -val is, ilyenkor megint Osszeflizi a
lekérdezést.
@ Itt is érdemes Osszevetni a where operator definicidjat (kurzorral rdallva F12 vagy
- jobbklikk » Go To Definition) a két lekérdezésrészben.

Nem lehet elégszer hangsulyozni az IQueryable és az IEnumerable kozti
Q kulonbségeket. Az IQueryable kifejezések SQL-1é fordulnak (amikor le tudnak), mig
az IEnumerable-en végzett miveletek minden esetben memoridban hajtédnak

végre.
(r) Ha nem akarunk véletlentil memdriabeli kiértékelésre vdaltani, az implicit tipus
- (var) alkalmazdsa jo szolgalatot tehet.

Beszuras tobb-tobbes kapcsolatba

Azokat a termékeket szeretnénk megrendelni, amiknek a nevében van egy adott beti. Haszndljuk
fel yjra az el6z6, hasonld lekérdezésiinket.

var q = from p in ctx.Products
where p.Name.Contains("r")
select p;

var order = new Order { OrderDate = DateTime.Now };
foreach (var p in q)

{
order.OrderItems.Add(

new OrderItem { Product = p, Order = order, Quantity=2 }
)
}

ctx.0Orders.Add(order);
ctx.SaveChanges();

62

Ismét figyeljik, hogy milyen SQL generdlddik. Az Order létrehozasa utdn nekink még egy uj
OrderItem entitdst is létre kell hoznunk, amit a tobb-tobb kapcsolatra haszndlunk fel. Figyeljik meg,
hogy nem Kkellett minden OrderItem-et kulon-kulon hozzdadnunk a kontextushoz, az Order
hozzdadasaval minden OrderItem is bekerilt a kontextusba, majd el is ment6dott az adatbazisba.

Kapcsolodo entitasok betoltése

frjuk ki minden termék neve mellé a kategériajat is.

var products = ctx.Products;

foreach (var p in products)

{
Console.WriteLine($"{p.Name} ({p.Category.Name})");

}

Figyeljik meg, hogy a fenti lekérdezésben a kategdria navigacids property null értéki és kivétel is
keletkezik, pedig biztosan tartozik a termékhez kategoria az adatbazisban. Ennek oka, hogy az EF
alapbol nem tolti be a navigacios property-k értékeit, ezt egy killon Include metddushivassal tudjuk
megtenni az IQueryable tipuson. Ez az un. eager loading.

/**/var products = ctx.Products
.Include(p => p.Category);

Ismét figyeljuk, hogy mikor mi fut le az adatbazisszerveren: ez egy JOIN segitségével egy fust alatt
berant minden adatot mindkét tablabol.

Ha a kapcsolodo Order listat is szeretnénk kitoltetni, akkor ott egyrészt a ProductOrders listat is be
kell Include-olni, masrészt pedig még egy kapcsolattal tovabbmenve a OrderItem Order tulajdonsagat
is be kell toltetni. Az ilyen tobbszintes hivatkozast az Include és ThenInclude hasznalataval lehet
elérni:

/**/var products = ctx.Products

/**/ .Include(p => p.Category)
.Include(p => p.ProductOrders)
.ThenInclude(po => po.Order);

/**/foreach (var p in products)

/**/{

[Console.WriteLine($"{p.Name} ({p.Category.Name})");
foreach (var po in p.ProductOrders)

{
Console.WriteLine($"\tRendelés: {po.Order.OrderDate}");

}
/**/}

63

Ha nem akarunk minden oszlopot lekérdezni az 6sszes érintett tablabol, akkor a projekcios (select)
részt ugy is megirhatjuk, hogy csak a sziikséges adatokat kérdezze le, ez az un. query result shaping.

var products = ctx.Products.Select(p=> new

{
ProductName=p.Name,
CategoryName=p.Category.Name,
OrderDates= p.ProductOrders
.Select(po=>po.0rder.OrderDate)
.ToArray()
}
K
foreach (var p in products)
{
Console.WriteLine($"{p.ProductName} ({p.CategoryName})");
foreach (var po in p.OrderDates)
{
Console.WriteLine($"\tRendelés: {po}");
}
}

Figyeljik meg, hogy a generalodo SELECT projekcios része igy joval rovidebb.

7 Tovabbi ritkdbban alkalmazott / korabbi verziokban elterjedt modszerek: explicit
- loading, lazy loading.

Tobb-tobbes kapcsolat kozvetlen navigalasa

Lehet6ség van tobb-tobbes kapcsolat navigaldsakor a kapcsolotabla atugrasara. Ehhez vegytink fel
ennek megfelel6 property-ket a kapcsolat két oldalan. Az Order-be:

public ICollection<Product> Products { get; } = new List<Product>();
A Product-ba:
public ICollection<Order> Orders { get; } = new List<Order>();

A kontext OnModelCreating-jében konfiguralnunk kell a tobb-tobbes kapcsolatban részt vevd minden
property-t, hogy az EF tudja, hogy ez az 0sszes property ugyanazon kapcsolathoz tartozik:

modelBuilder.Entity<Product>()
.HasMany(p => p.Orders)
WithMany(o => o.Products)
.UsingEntity<OrderItem>(

64

https://docs.microsoft.com/en-us/ef/core/querying/related-data/explicit
https://docs.microsoft.com/en-us/ef/core/querying/related-data/explicit
https://docs.microsoft.com/en-us/ef/core/querying/related-data/lazy

j =]
.HasOne(oi => o0i.0rder)
WithMany(o => o.0rderItems)
.HasForeignKey(oi => oi.0rderId),
j =]
.HasOne(oi => oi.Product)
WithMany(p => p.ProductOrders)
.HasForeignKey(oi => oi.ProductId),
j =
{
j.HasKey(oi => 0i.1d);
3

Bonyolultnak tinik, de inkdbb csak hosszu, mig mind a 9 érintett property szerepét beallitjuk.

Mindennek nem szabadna adatbdazis valtozast okoznia, hiszen nem lett tobb kapcsolat, csak egy
logikai utroviditést vettiink fel. Ellen6rizzik le:

Add-Migration NxN

Ha mindent jol csindltunk, ennek egy ires migraciot kell generdlnia. Toroljuk is.

Remove-Migration

Ezutan a kordbbi lekérdezéstinknél elhagyhatjuk az OrderItem betoltését.

var products = ctx.Products
.Include(p => p.Category)
.Include(p => p.Orders);

foreach (var p in products)

{
Console.WriteLine($"{p.Name} ({p.Category.Name})");
foreach (var po in p.ProductOrders)
{
Console.WriteLine($"\tRendelés: {po.Order.OrderDate}");
}
}

g Ett6l nem feltétlenil lesz egyszeriibb vagy gyorsabb a generalt lekérdezés, csak a
kodunk lesz egyszertbb.

Moddositas, Find

Nézziunk példat egyszerl modositasra.

65

var pFirst = ctx.Products.Find(1);
if (pFirst != null)

{
Console.WriteLine(ctx.Entry(pFirst).State);
pFirst.UnitPrice *= 2;
Console.WriteLine(ctx.Entry(pFirst).State);
ctx.SaveChanges();
Console.WriteLine(ctx.Entry(pFirst).State);
}

Debuggerrel sorrdl sorra lépkedve kovessiik végig az EF valtozaskovetd miikodését. A lekérdezések
eredménye alapértelmezetten bekeril a valtozaskovet6be (change tracker). Ezutdn az osztalyon
végezhetink adatvaltoztat6 miveletet, mindig konnyen eldonthetd, hogy volt-e valtozas, ha
0sszevetjik az aktudlis allapotot (current value) a bekertiiléskorival (original value). Figyeljuk meg,
hogyan kezeli az EF a hozza tartozo objektumok allapotat.

(r) Az Entry altal adott osztalyb6l megtudhatjuk az aktudlis és a bekeruléskori
- értékeket az OriginalValues és CurrentValues propertyk altal.

A Find az elsédleges kulcs alapjan keres ki egy entitdst. Nem Kkell ismerniink az els6dleges kulcs
property nevét. Ha a valtozaskovet6be mar kordbban bekertult a keresett entitds, akkor onnan
kapjuk vissza, ilyenkor adatbazishozzaférés nem torténik.

Torlés

Toroljuk ki az adatbazisbol az egyik megrendelést.

var orderToRemove = ctx.Orders.OrderBy(o=>0.0rderDate).First();

ctx.0rders.Remove(orderToRemove);
ctx.SaveChanges();

Figyeljuk meg az adatbazis adatai kozott, hogy az Order torlésével a kapcsolodd OrderItem
bejegyzések is torlédtek, mivel alapértelmezetten a séman be van kapcsolva a kaszkad torlés. Ez
ebben az esetben indokolt is lenne, de sokszor nem szeretnénk, ha a kapcsolédd rekordok is
torlédnének. Ennek megakadalyozasara vegyuk fel explicit a konfiguracioban az Order-OrderItem
kapcsolatot és kapcsoljuk ki rajta a kaszkad torlést az OnModelCreating-ben.

// @ korabbi tobb-tobbes konfiguracid

/**/j =]

/**/ .HasOne(oi => o0i.0rder)

/**/ MWithMany(o => o0.0rderItems)

[.HasForeignKey(oi => oi.0rderId) // , térdlve
.0nDelete(DeleteBehavior.Restrict),

A torolt Order-t és a sziikséges kapcsold rekordokat vegyuk fel migracio altal beszurt adatként. Az

66

OnModelCreating végére:

modelBuilder.Entity<Order>().HasData(
new Order {Id = 1, OrderDate = new DateTime(2019, 02, 01)}
JE

modelBuilder.Entity<OrderItem>().HasData(
new OrderItem { Id = 1, OrderId = 1, Productld
new OrderItem { Id = 2, OrderId = 1, Productld

1
N =
-

)i
Forditas utan ne felejtsiik el migracioval atvezetni az adatbdzis sémajaba is a valtozasokat.

Add-Migration ProductOrderRestrictDelete
Update-Database 0
Update-Database

Futtassuk ujra a torl6 kodot - kivételt kapunk, mivel az OrderItem rekord nem torlédott kaszkad
modon, igy az egy mar nem létez6 Order-re hivatkozik, viszont ez a kiils6 kulcs kényszert megsérti.
Emiatt az egész torlési miivelet meghiusul.

Adatkezel6 alkalmazasokban az adatbazisbeli torlés (SQL DELETE utasitas) helyett
O gyakran inkabb logikai torlést (soft delete) alkalmaznak. A logikai torlés
et megvaldsitasaval ezen gyakorlat keretében nem foglalkozunk.

Felsorolt tipus, értékkonvertalok

Az EF alapértelmezetten képes a felsorolt tipusokat is leképezni. Hozzunk létre 0j felsorolt tipust a
Product osztaly mellé ShipmentRegion néven.

[Flags]
public enum ShipmentRegion
{

EU = 1,

NorthAmerica = 2,

Asia = 4,

Australia = 8

A Flags attributummal azt jelezziik, hogy szeretnénk a bitmiveleteket is alkalmazni a felsorolt
értékére, igy egy ShipmentRegion tipusu valtozo egyszerre tobb értéket is felvehet (pl.: 3-as érték
egyszerre tartalmazza az EU-t és Eszak-Amerikat is).

Vegyunk fel a Product osztalyba egy uj property-t az 4j felsorolt tipussal.

67

https://www.thereformedprogrammer.net/ef-core-in-depth-soft-deleting-data-with-global-query-filters/

public ShipmentRegion? ShipmentRegion { get; set; }

Moddositsuk és bovitsiik a kezdeti Product-ok listajat szallitasi informaciokkal:

/**/mode1Builder.Entity<Product>().HasData(
/**/ new Product("Sor")

/%% {
/**/ Id = 1, UnitPrice = 50, CategoryId = 1
,ShipmentRegion = ShipmentRegion.Asia
/**/ },
/**/ new Product("Bor") { Id = 2, UnitPrice = 550, CategoryId =1 },
/**/ new Product("Tej") { Id = 3, UnitPrice = 260, CategoryId = 1 }

,new Product("Whiskey")

{
Id = 4,
UnitPrice = 960,
Categoryld = 1,
ShipmentRegion = ShipmentRegion.Australia
}
new Product("Rum")
{
Id = 5,
UnitPrice = 960,
Categoryld = 1,
ShipmentRegion = ShipmentRegion.EU | ShipmentRegion.NorthAmerica
}
/*%/);

Figyeljik meg a generalt migracioban, hogy milyen tigyesen lekezeli az EF a korabbi migraciéban
beszurt elem (1-es Id) valtozasat, mdédosité kodot general hozza.

Valtozott a modell, frissitsiik az adatbdzist.

Add-Migration ProductShipmentRegion
Update-Database

Figyeljuk meg, hogy az 0j oszlop egész szamként tarolja a felsorolt tipus értékeit. Ha ez nem tetszik
nekink, mert példaul szovegesen szeretnénk az adatbazisban latni az értékeket, hasznalhatjuk az
értékkonvertaldkat (value converter), melyek az adatbazis- és az objektummodell kozott képesek
oda-vissza konvertdlni a leképezett elemek értékeit. Szamos beépitett konvertdlo van az EF-ben,
melyek kozil a leggyakoribbakat automatikusan alkalmaz is az EF, elég csak a céltipust
megadnunk. Az felsorolt tipus - szoveg atalakito is ilyen. Az OnModelCreating-be:

modelBuilder
.Entity<Product>()
.Property(e => e.ShipmentRegion)

68

.HasConversion<string>();
Valtozott a modell, frissitsiik az adatbazist.

Add-Migration ProductShipmentRegionAsString
Update-Database

Ahogy a migrdcio generaldsakor a figyelmeztetés is irja, ellendrizziik a migraciot,
mert olyan oszlop tipusat valtoztatjuk, amiben vannak mar adatok, ez pedig
kuilonos korultekintést igényel. A generalt migracié nem is tokéletes, a Down részben

A el6bb allitja a migracio nvarchar-rol int-re az oszlop tipusat, minthogy a szoveges
értéket szamra (pontosabban szdmot tartalmazd szovegre) cserélné - igy lefelé
migraldskor SQL hibat kapunk. Az UpdateData hivas AlterColumn hivas elé
helyezésével ezt javithatjuk.

Ellendrizzik a termékek tablajaban, hogy sikerilt-e az atalakitas. Kiprobalhatjuk, hogy miikodik-e a
konverzio objektummodell szinten is. A legfelsd szintli kodban kérjik el az 6sszes terméket:

var prods = ctx.Products.ToArray();

Vizsgaljuk meg a tombben 1év6 termékeket debuggerrel: lathatd, hogy a szdllitasi teruletek
megfelel6 értékiek.

Explicit is megadhatjuk az alkalmazando konvertert, ami leggyakrabban a szamos
(;) beépitett konverter kozul kerul ki. Sajat konvertereket is irhatunk, ha a beépitettek
ot kozott nem taldlunk megfelel6t.

Tranzakciok

Az EF az egyes SaveChanges hivasokat egy tranzakcioban futtatja (ha az adatbdzis provider
tdmogatja azt). Viszont gyakran megesik az, hogy tobb SaveChanges hivast kellene egy tranzakcioban
kezelniink. Tehat ha az egyik sikertelentl fut le, akkor a tobbit sem szabad érvényre juttatni.

Nézziink példat a tranzakcidkezelésre. Szurjunk be tobb terméket az adatbazisba toébb SaveChanges
hivéssal.

int cid = ctx.Categories.First().Id;

try
{
using (var transaction = ctx.Database.BeginTransaction())
{
ctx.Products.Add(new Product("Coca Cola")
{
Categoryld = cid,
b

69

https://docs.microsoft.com/en-us/ef/core/modeling/value-conversions?tabs=data-annotations#built-in-converters
https://docs.microsoft.com/en-us/ef/core/modeling/value-conversions#the-valueconverter-class

ctx.SaveChanges();
ctx.Products.Add(new Product("Pepsi")
{

CategoryId = cid,
b
ctx.SaveChanges();
transaction.Commit();

}
}
catch (Exception){}

A tranzakciok kezdete-végével kapcsolatos események csak a debug szintli napléban jelennek meg.
Allitsuk &t a naplozasi szintet a LogTo fiiggvényben:

/**/.LogTo(Console.WritelLine, LoglLevel.Debug); // Loglevel modositva

A tranzakcion Commit-ot hivunk, ha sikeresen lefutott mindegyik SaveChanges, ha valamelyik hibara
futott, akkor a using blokkbol valo kilépésig nem fog Commit hivddni. Ha barmilyen ok miatt a Commit
nem hivodik meg, legkés6bb a using blokk vége Rollback-kel lezarja a tranzakciot.

Probaljuk ki! Ezesetben helyesen fut le a beszurasunk. Figyeljik meg a konzolon a
tranzakciokezeléssel kapcsolatos tizeneteket.

Teszteljik a hibas agat is azaltal, hogy a masodik terméket egy nem létez§ kategoriaba probaljuk
meg beszurni.

/**/using (var transaction = ctx.Database.BeginTransaction())

/**/{
ctx.Products.Add(new Product("Cider") //Gj név
/x%/ {
/**/ CategoryId = cid,
/**/ 1)

/*¥*/ ctx.SaveChanges();

ctx.Products.Add(new Product("Kémives KUBU") //0(j név
/*%/ {

CategoryId = 100, //nem 1étezd Categoryld

/**/ 1)
/**/ ctx.SaveChanges();
/**/ transaction.Commit();
/**/}

Figyeljiik meg, hogy ilyenkor nem Keriil beszirasra az elsé termék sem. Ugyszintén figyeljiik meg a
konzolon a tranzakciokezeléssel kapcsolatos iizeneteket.

70

ASP.NET Core alapszolgaltatasok

Projekt létrehozasa

Ezen a gyakorlaton nem a beépitett API projektsablont fogjuk felhasznalni, hanem egy tres
ASP.NET Core projektbdl probaljuk felépiteni és megérteni azt a funkcionalitast, amit egyébként az
el6re elkészitett VS projektsablonok adnanak készen a keztinkbe.

Generalas

Hozzunk létre a Visual Studioban egy uj, C# nyelvl projektet az ASPNET Core Empty sablonnal, a
neve legyen HelloAspNetCore. Megcélzott keretrendszerként adjuk meg a .NET 6-ot. Minden extra
opcio legyen kikapcsolva, a docker és a HTTPS is.

Kitéro: NuGet és a keretrendszert alkoto komponensek helye

A NET 6 és az ASP.NET Core gyakorlatilag teljes mértékben publikusan elérhet6 komponensekbdl
épul fel. A komponensek kezelésének infrastrukturdjat a NuGet csomagkezel6 szolgaltatja. A
csomagkezeldn keresztiil elérheté csomagokat a nuget.org listdzza és igény esetén a NuGet kliens,
illetve a .NET Core eszkozok (dotnet.exe, Visual Studio) is innen toltik le. A fejleszt6knek
teljesitményszempontbol nem érné meg az alap Kkeretrendszert alkotdé csomagokat allanddéan
letoltogetni, igy a klasszikus keretrendszerekhez hasonléan a .NET 6 telepitésekor egy konyvtarba
(Windows-on ide: C:\Program Files (x86)\dotnet, illetve C:\Program Files\dotnet) bekeriilnek az
alap keretrendszert alkotdo komponensek - 1ényegében egy csomo .dll kilonbozd alkonyvtarakban.
A futtatashoz sziikséges szerelvények a shared alkonyvtarba telepiilnek, ezek az un. Shared
Framework-ok. A gépen futo kiilonb6z6 .NET Core/6 alkalmazasok kozosen hasznéalhatjak ezeket. A
fejlesztéshez az alapvetd fligg6ségeket a packs alkonyvtarbdl hivatkozhatjuk.

Nem fejleszt6i, példaul végfelhaszndloi vagy szerver kornyezetben- ahol nem is biztos, hogy fel van
telepitve az SDK, nem feltétlenul igy biztositjuk a fuggdségeket, de ennek a boncolgatasa nem
témaja ennek a gyakorlatnak.

Eredmény
Nézzik meg, milyen projekt generalddott:

* .csproj: (Projekten jobb gomb > Edit Project File) a projekt forditdsdhoz sziikséges
bedllitdsokat tartalmazza. El6z6 verziokhoz képest itt er6sen épitenek az alapértelmezett
értékekre, hogy minél karcsubbra tudjdk fogni ezt az dllomdanyt.

o Project SDK: projekt tipusa (Microsoft. NET.Sdk.Web), az eszkozkészlet funkcidit
szabdlyozza, meghatarozza a futtatdshoz hasznalatos shared framework-ot, illetve
meghatarozza a megcélzott keretrendszert is(1asd lentebb).

o TargetFramework: net6.0. Ezzel jelezzilk, hogy .NET 6-os API-kat hasznalunk az
alkalmazasban.

» Connected Services: kulso szolgaltatasok, amiket hasznal a projektiink, most nincs ilyenunk.

* Dependencies: a keretrendszer alapfligg6ségei és egyéb NuGet csomagfliiggdségek szerepelnek

71

https://www.nuget.org/
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/web-sdk

itt. Egyeldre csak keretrendszer fligg6ségeink vannak.

- Frameworks: két alkonyvtarat (Microsoft.AspNetCore.App, Microsoft.NETCore.App)
hivatkozunk a .NET SDK packs alkonyvtarabol. Ezek a fugg6ségek kiils6 NuGet csomagként
is elérhetdek, de ahogy fentebb jeleztiik, nem érdemes ugy hivatkozni éket.

o Analyzers: specidlis komponensek, amik kddanalizist végzenek, de egyébként ugyanugy
kiils6 fugg6ségként (NuGet csomag) kezelhetjik 6ket. Ha kibontjuk az egyes analizatorokat,
akkor lathatjuk, hogy miket ellenériznek. Ezek a fligg6ségek a futdshoz nem sziikségesek.

» Properties: duplakattra el6jon a klasszikus projektbeadllito feliilet.

o launchSettings.json: a kilonb6z6 inditdsi konfigurdciokhoz tartozd bedllitdsok (lasd
kés6hb).

* appsettings.json: futasidejd beallitasok helye. Kibonthato, kibontva a kilonb6z6 kornyezetekre
specifikus konfigurdciok taldlhatéak (lasd kés6bb).

Legfels6 szintii kod, minimal API

Az el6z0 ASP.NET verzioval ellentétben, itt mar az ASP.NET Core alkalmazdasok a szuletésiktdl fogva
klasszikus konzolos alkalmazasként is indithatok, ekkor az alkalmazdas alapértelmezett belépési
pontja a legfels6 szintl kdd (esetleg a Main metodus). Az ASP.NET Core 6-0s verzioban megjelent un.
minimal API segitségével mar nem csak a konfigurdcidt tartalmazhatja ez a kdd, hanem (egyszer)
kiszolgald logikat is.

Esetiinkben a kovetkez0 1épéseket végzi el a generalt kod:
* a hosztoldsi kornyezetet és az alkalmazas alapszolgdltatdsait konfigural6 builder objektum

Osszedllitasa (CreateBuilder fliggvényhivas)

* a builder objektum alapjan a hosztolasi kdrnyezet és az alkalmazdas szerkezetének felallitasa
(Build figgvényhivas)

» végpontot definidl az alkalmazas gyokércimére minimdl API segitségével. A végpont a
meghivasara a Hello World! szoveget adja vissza.

+ a felallitott szerkezet futtatasa (Run fliiggvényhivas)
Az igazdn munkas feladat a builder megalkotdsa lenne, igen sok mindent lehetne benne
konfigurdlni, ez a kddban a CreateBuilder-ben torténik, ami egy szokvanyos, az egész
webalkalmazds miikodési kornyezetét meghatarozoé beallitdsokat elvégzd kiinduld buildert allit eld.

Ha valamit a kiindulé builderben megadottdl eltérden szeretnénk, vagy uj bedllitdsokat adnank
meg, akkor a kiinduld builder objektumon torténd fliggvényhivasokkal tehetnénk meg.

Mivel a kiindul6 builderen nem végziink semmilyen utélagos konfiguralast, igy akar egy utasitassal
is megkaphatnank az alkalmazasszerkezetet reprezentalo WebApplication példanyt.

//var builder = WebApplication.CreateBuilder(args);
//var app = builder.Build();

var app = WebApplication.Create();

72

Végrehajtasi pipeline, middleware-ek

Az ASP.NET Core-ban egy kérés kiszolgalasa ugy torténik, hogy a kérés egy csdvezetéken halad
(végig). A cs6vezeték middleware-ekbdl (MW) all. Az alabbi abra szemlélteti a middleware pipeline
miikodését.

Middleware 1 Middleware 2 Middleware 3

[/ logic
next(); [/ logic

next();

[/ more logic
/{ more logic

// more logic

Forrds: https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middleware

Az ASPNET Core alkalmazas alapszerkezete, hogy a befuté HTTP kérés (végig)fusson a middleware-
ekbdl 4ll6 csdvezetéken és valamelyik (alapesetben az utolsd) middleware el6allitja a vdlaszt, ami
visszairanyban halad végig a cs6vezetéken. A cs6vezeték adja tehat az alkalmazas szerkezetét. A
kiindulo cs6vezetéket a WebApplication.Create vagy a builder.Build épiti fel, ezt utana app.UseX (X=
MW neve) hivasokkal testreszabhatjuk, kiegészithetjuk.

Esetiinkben a kiindulo cs6évezetékben harom MW van:

 kivételkezel6 middleware (UseDeveloperExceptionPage), ami az 6t kovet6 middleware-ek hibait
képes elkapni és ennek megfeleléen egy a fejleszt6knek szolo hibaoldalt jelenit meg. Ez csak
opciondlisan keril beregisztrdlasra attol fliggéen, hogy most éppen Development mddban
futtatjuk-e az alkalmazast vagy sem. (1asd késébb)

» routing middleware (UseRouting), aminek a feladata, hogy a bejovd kérés és a végpontok (lasd
lentebb) altal adott informdcidk alapjan kitaldlja, hogy melyik endpoint felé tovabbitsa a bejovo
kérést.

» végpontok middleware (UseEndpoints), ami a kivdlasztott endpoint definici6jdban megadott
logika tényleges lefuttatasaért felel

@ A kiindulé cs6vezeték regisztraldsat megfigyelhetjiik a WebApplicationBuilder
- forraskodjaban - keressiik az app.UseX sorokat.

73

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middleware
https://github.com/dotnet/aspnetcore/blob/c911002ab43b7b989ed67090f2a48d9073d5118d/src/DefaultBuilder/src/WebApplicationBuilder.cs#L232
https://github.com/dotnet/aspnetcore/blob/c911002ab43b7b989ed67090f2a48d9073d5118d/src/DefaultBuilder/src/WebApplicationBuilder.cs#L232
https://github.com/dotnet/aspnetcore/blob/c911002ab43b7b989ed67090f2a48d9073d5118d/src/DefaultBuilder/src/WebApplicationBuilder.cs#L232

A kiinduld projekt nem valtoztat a kiinduld csévezetéken, csak egy végpont definiciot ad meg
(app.MapGet sor).

A middleware-ek sorrendje fontos. Ha nem megfelel6 sorrendben regisztraljuk
Oket, nem megfelel6 miikodés lehet az eredmény. A dokumentdcié altalaban
tartalmazza, hogy melyik middleware hova illeszthetd be.

Hosztolasi lehetoségek a fejlesztoi gépen

Probdljuk ki IIS Expressen keresztil futtatva, azaz a VS-ben az inditégomb (z6ld nyil) mellett az IIS
Express felirat legyen! Ha nem ez a felirat van, allitsuk 4t az inditégomb jobb szélén 1évé meniit
lenyitva.

Két dolog is torténik: az alkalmazasunk IIS Express webkiszolgdléban hosztolva kezd futni és egy
bongész6 is elindul, hogy ki tudjuk prébalni. Figyeljik meg az értesitési tertleten (az 6ra mellett)
megjelend IIS Express ikont (£°) és azon jobbklikkelve a hosztolt alkalmazas cimét (jobbklikk >
Show All Applications).

A bongész0 az alkalmazdas gyokércimére navigdl (a cim csak localhost:port-bol all), igy a Hello
World! szoveg jelenik meg.

(r) A inditogomb legordul6jében a bongészo tipusat is allithatjuk.
w

Az TIS Express a Microsoft webszerverének (IIS) fejleszt6i célra optimalizalt
O valtozata. Alapvetden csak ugyanarrol a géprol érkezoé (localhost) kéréseket szolgal

et Ki.
A masik lehet6ség, ha kozvetlentul a konzolos alkalmazast szeretnénk futtatni, akkor ezt az

inditégombot lenyitva a projekt nevét kivalasztva tehetjik meg. Ebben az esetben egy bedgyazott
webszerverhez (Kestrel) futnak be a kérések. Probaljuk ki a Kestrelt kozvetlentl futtatva!

Most is két dolog torténik: az alkalmazdsunk konzolos alkalmazasként kezd futni, illetve az el6zd
esethez hasonldan a bongész6 is elindul. Figyeljiuk meg a konzolban megjelen6 napléuizeneteket.

Bar ezek a hosztolasi opciodk fejleszt6i kornyezetben nagyon kényelmesek, érdemes
attekinteni az éles hosztolasi opciokat itt. A Kestrel ugyan jelenleg mar alkalmas
O arra, hogy kipublikaljuk kozvetlenil a vildghalora, de mivel nem rendelkezik
- olyan széles konfigurdcios és biztonsagi bedllitdsokkal, mint a mar bejaratott
webszerverek, igy érdemes lehet egy ilyen webszervert a Kestrel elé rakni proxy
gyanant, példaul az IIS-t vagy nginx-et.

Rakjunk most a kiszolgdlé logikdnkba egy kivétel dobdst a kiirds helyett, hogy kiprobaljuk a
hibakezel6 MW-t.

/**/app.MapGet("/", () =>
{

throw new Exception("hiba");

74

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middleware#built-in-middleware
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers

//"Hello World!"

}
/**/);

Probaljuk ki debugger nélkil (Ctrl + F5)!

Lathatjuk, hogy a kivételt a hibakezel6 middleware elkapja és egy hibaoldalt jelenitiink meg, s6t
még a konzolon is megjelenik naplobejegyzésként.

Alkalmazasbeallitasok vs. inditasi profilok

Figyeljuk meg, hogy most Development konfiguraciéban fut az alkalmazdas (konzolban a Hosting
environment kezdet(sor). Ezt az informdciot a keretrendszer kornyezeti valtoz6 alapjan allapitja
meg. Ha a lauchSettings.json dallomanyt megnézziikk, akkor lathatjuk, hogy az
ASPNETCORE_ENVIRONMENT kornyezeti valtozo Development-re van allitva.

Prébaljuk ki Visual Studio-n kivulrél futtatni. Projekten jobb klikk > Open Folder in File
Explorer. Ezutan a cimsorba mindent kijelolve cmd + Enter, a parancssorba dotnet run.

Ugyanugy fog indulni, mint VS-b6l, mert az ujabb .NET Core verziokban mar a dotnet run is
figyelembe veszi a launchSettings.json-t. A bongész6t magunknak kell inditani (most méeg) és
elnavigdlni a napléban szerepld cimre (Now listening on: http://localhost:port Uzenetet
keressunk).

Ha nem akarjuk ezt, akkor a --no-launch-profile kapcsolot hasznalhatjuk a dotnet run futtatasanal.

Most az alkalmazasunk Production mddban indul el, és ha a localhost:5000-es oldalt megnyitjuk a
bongészében, akkor nem kapunk hibaoldalt, de a konzolon tovadbbra is megjelenik a
napldbejegyzés.

@ A dotnet run futasat CTRL + C-vel allithatjuk le.

A konzolban a setx ENV_NAME Value utasitassal tudunk felvenni kdrnyezeti valtozot
(r') ugy, hogy az permanensen megmaradjon, és ne csak a konzolablak bezarasaig
- maradjon érvényben. (Admin/nem admin, illetve powershell konzolok
kiilonboz6képpen viselkednek)

Az eredeti logikankat kommentezzik vissza.

/**/app.MapGet("/", () =>
/**/{
//throw new Exception("hiba"); //kikommentezve
"Hello World!"; //komment levéve és ; hozzaadva
/**/});

Az alkalmazds szdmara a kiulonbozd bedllitasokat JSON allomanyokban tarolhatjuk, amelyek akar
kornyezetenként kilonbozdéek is lehetnek. A generdlt projektinkben ez az appsettings.json,

75

https://github.com/dotnet/sdk/issues/9038
http://localhost:port
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/setx

nézzink bele - f6leg naplozasi beallitdsok vannak benne. A fijl a Solution Explorer ablakban
kinyithato, alatta megtaldljuk az appsettings.Development.json-t. Ebben a Development nevi
konfiguraciora vonatkozo bedllitdasok vannak. Alapértelmezésben az appsettings.<inditasi
konfiguracié neve>.json bedllitdsai jutnak érvényre, felllirva a sima appsettings.json egyez0
értékeit (a pontosabb logikat 1asd lentebb).

Allitsunk Development médban részletesebb naplézast. Az appsettings.Development.json-ben
minden napldzasi szintet irjunk Debug-ra.

{
"Logging": {
"LogLevel™: {
"Default": "Debug",
"Microsoft.AspNetCore": "Debug"
}
}
}
@ A naplozasi szintek sorrendje itt talalhato.

Probaljuk ki, hogy igy az alkalmazdsunk futdsakor minden bongészdébeli frissitésink (F5)
megjelenik a konzolon.

VS-b6l is tudjuk dllitani a kornyezeti valtozokat, nem kell a launchSettings.json-ben kézzel
varazsolni. A projekt tulajdonsagok Debug lapjan az Open debug launch profiles Ul szovegre
kattintva egy dialégusablak ugrik fel, itt tudunk Uj inditasi profilt megadni, illetve a meglév6eket
modositani. Valasszuk ki az aktudlisan haszndlt profilunkat (projektneves), majd irjuk at az
ASPNETCORE_ENVIRONMENT kornyezeti valtozo értékét az Environment Variables részen mondjuk
Production-re.

Inditsuk ezzel a profillal és figyeljik meg, hogy mdar nem jelennek meg az egyes kérések a
napléban, barhogy is frissitgetjik a bongész6ét. Oka: nincs appsettings.Production.json, igy az
altalanos appsettings.json jut érvényre.

(r) Parancssorban a dotnet run --launch-profile [profilnév] kapcsoldval adhatjuk meg
- az inditasi profilt.

Szamos forrasbdl lehet konfigurdciot megadni: parancssor, kornyezeti valtozo, fajl
(ezt lattuk most), felhd (Azure Key Vault) sth. Ezek koziil tobbet is haszndlhatunk
egyszerre, a Kkulonbozd forrasok konfiguracioja a kozos kulcsok mentén

O osszefésulddik. A forrasok (configuration provider-ek) kozott sorrendet adhatunk
meg, amikor regisztraljuk 6ket, a legutolsként regisztralt provider konfiguracidja
a leger6sebb. Az alapértelmezett provider-ek regisztracigjat elintézi a kordbban
latott kiindulo builder.

76

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/logging#configure-logging

Statikus fajl MW

Hozzunk létre a projekt gyokerébe egy wwwroot nevii mappat (jobbklikk a projekten » Add » New
Folder) és tegyunk egy képfajlt bele. (Ellophatjuk pl. a http://www.bme.hu honlap bal fels6 sarkabol
a logo-t)

A statikus fajlkezelést a teljes modularitas jegyében egy kilon middleware-ként implementaltak a
Microsoft.AspNetCore.StaticFiles osztalykonyvtarban (az AspNetCore.App mar fliggdségként
tartalmazza, igy nem Kkell kilon hivatkoznunk), csak hozza kell adnunk a pipeline-hoz.

app.UseStaticFiles();
/**/app.MapGet("/", () => "Hello World!");

Probaljuk ki! Lathatjuk hogy a localhost:port cimen még mindig a Hello World! széveg tinik fel, de
amint a localhost:port/[képfajinév]-vel probalkozunk, a kép toltddik be. A static file MW megszakitja
a pipeline futdsat, ha egy 4ltala ismert fajltipusra hivatkozunk, egyébként tovabbhiv a kovetkez6
MW-be. Az ilyen MW-eket un. termindlé MW-eknek hivjuk.

Ezt az egysoros endpoint logikara tett torésponttal is szemléltethetjik. Figyeljink
O arra, hogy csak a Hello World! szovegre kertljon a toréspont és ne az egész MapGet
- sorra, illetve csak akkor nézziik, hogy mi fut le, amikor a kép URL-re hivunk.

Web API

Minden API-ndl nagyon magas szinten az a cél, hogy egy kérés hatdsara egy szerveroldali
kodrészlet meghivddjon. ASPNET Core-ban a kodrészleteket fiiggvényekbe irjuk, a fliggvények
pedig un. kontrollerek-be kertilnek. Egy controller dltaldban az egy er6forrastipushoz kapcsol6do
miiveleteket fogja dssze. Osszességében tehat a cél, hogy a webes kérés hatasara egy kontroller egy
figgvénye meghivodjon.

DummyController

Hozzunk létre egy uj mappat Controllers néven. A mappaba hozzunk létre egy kontrollert
(jobbklikk a Controllers mappan > Add > Controller... > a bal oldali fdban Common > API > jobb
oldalon API Controller with read/write actions) DummyController néven. A generdlt kontrolleriink
a Microsoft.AspNetCore.Mvc.Core csomagban talalhatd ControllerBase osztalybol szarmazik. (Ezt a
csomagot sem Kell feltenniink, mivel az AspNetCore.App fuigg6sége)

Adjuk hozza a szolgdltatdsokhoz a Kkontrollertimogatas szolgaltatast, és adjuk hozza a
csévezetékhez a kontroller kezel6 MW-t. Az egysoros MW-t kommentezziik ki. Igy néz ki a teljes
legfelsd szintd kdd:

var builder = WebApplication.CreateBuilder(args);
builder.Services.AddControllers(); @

var app = builder.Build();

//var app = WebApplication.Create(); @
app.UseStaticFiles();

77

http://www.bme.hu

//app.MapGet("/", () => "Hello World!"); ®
app.MapControllers();
app.Run();

@ Kontrollertdmogatas szolgaltatas regisztralasa
@ Mivel kell a kiindulé builder, igy ezt az egysoros app inicializaciét nem alkalmazhatjuk

® Egysoros MW kikommentezve

Probaljuk ki. Az alapoldal tres, viszont ha az /api/Dummy cimre hivunk, akkor megjelenik a
DummyController.Get altal visszaadott érték. A routing szabdlyok szabalyozzdk, hogy hogyan jut el a
HTTP kérés alapjan a végrehajtas a fliiggvényig. Itt attributum alapu routing-ot hasznalunk, azaz a
kontroller osztalyra és a fuggvényeire biggyesztett attributumok hatdrozzak meg, hogy a HTTP
kérés adata (pl. URL) alapjan melyik fliggvény hivodik meg.

A DummyController osztalyon 1év6é Route attributum az "api/[controller]" utvonalat definidlja,
melyb6l a [controller] ugynevezett token, ami jelen esetben a controller nevére cserél6dik. Ezzel
0sszességében megadtuk, hogy az api/Dummy utvonal a DummyController-t valasztja ki, de még nem
tudjuk, hogy a fliggvényei kozill melyiket kell meghivni - ez a fliggvényekre tett attributumokbol
kovetkezik. A Get fliggvényen lev6 HttpGet mutatja, hogy ez a fliggvény akkor hivando, ha a GET
kérés URL-je nem folytatodik - ellentétben a Get(int 1id) figgvénnyel, ami az URL-ben még egy
tovabbi szegmenst var (ezért van egy "{id}" paraméter megadva az attributum konstruktorban),
amit az id nevi fuggvényparaméterként hasznal fel.

API-t publikdlé alkalmazasokndl az attributum alapu routing az ajanlott, de
emellett vannak mdas megkozelitések is, példdul Razor alapu weboldalaknal
(r) konvencio alapu routing az ajanlott. B6vebben a témakorrol altaldnosan itt, illetve
- specifikusan webes API-k vonatkozdsaban itt lehet olvasni. A dokumentacio
mennyiségébdl lathato, hogy a routing alrendszer nagyon szofisztikalt és sokat tud,
szerencsére az alap mikodés elég egyszerl és gyorsan megszokhato.

Ha van idénk, probaljuk ki az /api/Dummy/[egész szam] cimet is. A Get(int id) fiiggvény kodjanak
megfelel6en, barmit adunk meg, az eredmény a value szoveg lesz.
Tipusos beallitasok, IOptions<T>

Fentebb lattuk, hogy a konfiguraciot ki tudtuk olvasni az IConfiguration interfészen keresztul, de
még jobb lenne, ha csoportositva és csoportonként kiilon C# osztalyokon keresztiil latnank 6ket.

Bévitsiik az appsettings.json-t egy sajat beallitdscsoporttal (DummySettings):
/**/{

/**/ "Logging": {
/**/ "LogLevel": {

/**/ "Default": "Information",

/**/ "Microsoft": "Warning",

/**/ "Microsoft.Hosting.Lifetime": "Information"
J*%) }

78

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/routing
https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/routing#attribute-routing-for-rest-apis

Jx%/ }'
"AllowedHosts": "*", // a sor végére bekeriilt eqgy vessz®
"DummySettings": {
"DefaultString": "My Value",
"DefaultInt": 23,
"SuperSecret": "Spoiler Alert!!!"

}
/**/}

Hozzunk létre egy uj mappat Options néven. A mappdba hozzunk létre egy sima osztalyt
DummySettings néven, a szerkezete feleljen meg a JSON-ben leirt bedllitascsoportnak:

public class DummySettings

{
public string? DefaultString { get; set; }
public int DefaultInt { get; set; }
public string? SuperSecret { get; set; }

}

Regisztraljuk szolgaltatasként a DummySettings kezelését, és adjuk meg, hogy a példanyt mi alapjan
kell inicializalni - a konfiguracio megfelel6 szekcidjara hivatkozzunk:

/**/builder.Services.AddControllers();
builder.Services.Configure<DummySettings>(
builder.Configuration.GetSection(nameof(DummySettings)));

A builder.Services-ben regisztralt szolgdltatdsok valdjaban egy dependency injection (DI)
konténerbe kertulnek regisztralasra. Ez tobbek kozott lehet6vé teszi, hogy az alkalmazdson beliil
konstruktorban paraméterként igényeljik a szolgaltatast. A paraméter értékét a DI alrendszer
automatikusan tolti ki a regisztralt szolgaltatasok alapjan.

ASPNET Core kornyezetben (is) torekedjunk arra, hogy lehet6leg minden
osztalyunk minden fliggdségét a DI minta szerint a DI konténer kezelje. Ez
O nagyban hozzajarul a komponensek kozotti laza csatolas és a jobb tesztelhetdség
et eléréséhez. BOvebb informaci6 az ASPNET Core DI alrendszerér6l a
dokumentacioban talalhato.

Igényeljink DummySettings-t a DummyController konstruktorban:

private DummySettings options;
public DummyController(IOptions<DummySettings> options)
{

this.options = options.Value;

79

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection

Lathatd, hogy a bedllitas IOptions-ba burkolva érkezik. Vannak az IOptions-nal
O okosabb burkolok is (pl. IOptionsMonitor), ami példdul jelzi, ha megvaltozik
- valamilyen beallitds. BOvebb informdaciéo az IOptions és tarsairol a hivatalos
dokumentdacidban talalhato.

Az egész szamot varo Get valtozatban hasznaljuk fel az értékeket:

/**/[HttpGet("{id}")]
/**/public string Get(int id)

/**/{
return id % 2 == @ ? (options.DefaultString ?? "value") : options.DefaultInt

.ToString();

/**/}

Probaljuk ki, hogy az /api/Dummy/[pdros szdam], illetve /api/Dummy/[pdratlan szam] végpontok
meghivasakor a megfeleld értéket kapjuk-e vissza.

User Secrets

A projekt konyvtdra gyakran valamilyen verziokezel6 (pl. Git) kezelésében van. Ilyenkor gyakori
probléma, hogy a konfiguracios fajlokba irt szenzitiv informaciok (API kulcsok, adatbazis jelszavak)
bekerilnek a verziokezel6be. Ha egy publikus projekten dolgozunk, példaul publikus GitHub
projekt, akkor ez komoly biztonsagi kockazat lehet.

Ne tegyunk a verziokezel6be szenzitiv informdaciokat. Gondoljunk arra is, hogy a
verziokezeld nem felejt! Ami egyszer mar bekerult, azt vissza is lehet nyerni beldle
(history).

Ennek a problémanak megoldasara egy eszkoz a User Secrets tarold. Jobbklikkeljunk a projekten a
Solution Explorer ablakban, majd valasszuk a Manage User Secrets menupontot. Ennek hatasara
megnyilik egy secrets.json nev fajl. Vizsgaljuk meg, hol is van ez a fajl: vigylik az egeret a fajlfiil
folé - azt lathatjuk, hogy a fajl a felhasznalonk sajat konyvtaran belil van és az utvonal része egy
GUID is. A projektfajlba (.csproj) bekertlt ugyanez a GUID (a UserSecretsld cimkébe).

Masoljuk at az appsettings.json tartalmat a secrets.json-be, vegyik ki a DummySettings-en kiviili
részeket, végul irjuk at a titkos értéket (SuperSecret):

{

"DummySettings": {
"DefaultString": "My Value",
"DefaultInt": 23,
"SuperSecret": "SECRET"

}

}

80

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration/options

Toréspontot letéve (pl. a DummyController konstruktoranak végén) ellendrizzik, hogy a titkos érték
melyik fajlbdl jon. Ehhez meg kell hivnunk bongész6b6l az api/dummy cimet.

Fontos tudni, hogy a User Secrets tarold csak Development mod esetén jut
A érvényre, igy figyeljink ra, hogy a megfelel6 modot inditsuk és a kornyezeti
valtozok is jol legyenek beallitva.

Ez az eljaras tehat a futtatd felhasznalo sajat konyvtarabol a GUID alapjan kikeresi a projekthez
tartozo secrets.json-t, annak tartalmat pedig futds kozben osszefésilli az appsettings.json
tartalmdval. Igy szenzitiv adat nem keriil a projekt konyvtaraba.

Mivel a User Secrets tarold csak Development mdd esetén jut érvényre, igy ha az
éles valtozatnak sziiksége van ezekre a titkos értékekre, akkor tovabbi trikkokre
@ van szukség. Ilyen megoldas lehet, ha a felhds hosztolas esetén a felh6bdl (pl.
- Azure App Service Configuration) vagy felhdbeli titoktarolobol (pl. Azure Key
Vault) vagy a DevOps eszkozb6l (pl. Azure DevOps Pipeline Secrets) toltjik be a
szenzitiv beallitasokat.

Epilégus - WebApplicationBuilder

Az eddigiekbdl lathatd, hogy szdmos alapszolgaltatds mar a CreateBuilder hivas altal visszaadott
kiindulo builderben konfigurdlva van. Ilyen az alap (IOptions nélkiili) alkalmazasbeallitdsok
kezelése vagy a naplozas. A CreateBuilder a WebApplicationBuilder internal konstruktorat hivja.

A WebApplicationBuilder el6dje az IWebHostBuilder, ez utobbinak a dokumentaciojat tanulmanyozva
érthetjiik meg, hogy mi mindent tud a kiindul6 builder.

81

https://docs.microsoft.com/en-us/azure/app-service/configure-common#configure-app-settings
https://docs.microsoft.com/en-us/aspnet/core/security/key-vault-configuration
https://docs.microsoft.com/en-us/aspnet/core/security/key-vault-configuration
https://docs.microsoft.com/en-us/azure/devops/pipelines/process/variables?view=azure-devops&tabs=yaml%2Cbatch#secret-variables
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/web-host

ASP.NET Core webszolgaltatasok I.-1I.

Kiegészito anyagok, segédeszkozok

» kapcsolddo GitHub repo: https://github.com/bmeaut/WebApiLab
o elég csak zip-kent letolteni, nem kell klonozni

» Postman vagy Fiddler Classic HTTP kérések kiildéséhez

Kiindulo projektek beuizemelése

A kiindul¢ solution két .NET 6 osztdlykonyvtarat foglal magaba, melyek egy N-rétegli architektura
egy-egy rétegét valositjak meg:

* WebApiLab.Dal: lényegében az Entity Framework gyakorlatok anyagat tartalmazza, ez az
adatelérési rétegtink.
o entitdsdefiniciok
o kontext, modellkonfiguracioval, kezdeti adatokkal
o connection string kezelés és SQL napl6zas a korabbi gyakorlatok alapjan
o migracid (még) nincs

* WebApiLab.Bll: ezt szanjuk az tuzleti logikai rétegnek. F6 feladata, hogy a DAL-ra épitve
végrehajtsa az Interfaces mappaban definidlt miveleteket.

o Interfaces - ez a BLL réteg specifikacioja

o Services - ide keriilnek majd az tizleti logikat, ill. az interfészeket megvaldsito osztaly(ok)
o Dtos - csak késébb lesz szerepik, egyel6re nincsenek hasznalva

o Exceptions - sajat kivétel osztdly, egyel6re nincs hasznalva

Adjunk hozza a solution-h0z egy uj C# nyelvii web API projektet (ASP.NET Core Web API, nem pedig
Web App), a neve legyen WebApiLab.Api.

A kovetkez6 dialégusablakban vdlasszuk ki a .NET 6 opciot. Az extrdk kozil ne kérjik ezeket:
HTTPS, Docker, authentikacio. Viszont hagyjuk bepipalva a Controller és az OpenAPI tdmogatast. A
generdlt projektbdl torolhetjik a minta API fajljait, azaz a Weather kezdetll fajlokat a projekt
gyOkerébdl és a Controllers mappabol.

Adjuk hozza fliigg6ségként:

* a BLL projektet (projekten jobbklikk » Dependencies » Add Project Reference...)

* a Microsoft.EntityFrameworkCore.Tools NuGet csomagot. Valasszunk olyan verzidt, ami egyezik
a DAL projekt Entity Framework Core fligg6ségének verzigjaval.

Olyan csomagokndl, ahol a verziészamozas koveti az alap Kkeretrendszer

A verzioszamozasat, torekedjink arra, hogy a csomagok verzidi konzisztensek
legyenek egymadssal és a keretrendszer verzidjaval is - akkor is, ha egyébként a

82

https://github.com/bmeaut/WebApiLab
https://github.com/bmeaut/WebApiLab/archive/refs/heads/master.zip
https://www.getpostman.com/
https://www.telerik.com/download/fiddler

fliggbségi szabalyok engednék a verziok keverését. Ha a projektiink példdul .NET
6-0s keretrendszert haszndl, akkor az Entity Framework Core és egyéb extra
ASP.NET Core csomagok kozil is olyan verziot valasszunk, ahol legalabb a f6verzio
egyezik, tehat valamilyen 6.x verziot. Ez nem azt jelenti, hogy az inkonzisztens
verziok mindig hibat eredményeznek, inkabb a projekt altaldban stabilabb, ha a
féverziok kozotti valtast egyszerre, kilon migracios folyamat (példa) keretében
végezzuk.

Az EF bekotése az ASP.NET Core DI, naplozo,
konfiguralo rendszereibe

A kontext konfigurdldsa az EF gyakorlat soran - mivel ott egy sima konzol alkalmazast irtunk - a
kontext OnConfiguring figgvényében tortént. Mivel az ASP.NET Core projekt DI rendszert is ad,
érdemes a kontextet a DI rendszerbe regisztralni, hogy a projekten belil a modulok/osztalyok
fliggdségként tudjadk hasznalni. A regisztralas a legfelsd szintli kodban torténik (1asd ASP.NET Core
bevezet6 gyakorlatot).

A kontext regisztralasa a legfels6 szintli kddban a DI konténerbe:

builder.Services.AddDbContext<AppDbContext>(o =>
0.UseSqlServer(builder.Configuration.GetConnectionString("DefaultConnection")));

Az EF naplézdast az ASP.NET Core naplozo rendszere végzi, amit a kiindul6 builder mdr inicializal,
igy ezzel kapcsolatban nincs teenddnk. Viszont egy 0j kontext konstruktorra lesz sziikségunk, ami
DbContextOptions<AppDbContext>-et var.

A kontext OnConfiguring-jara pedig nincs sziikség, ugyhogy toroljuk ki, helyére tegyuk az uj
konstruktort:

public AppDbContext(DbContextOptions<AppDbContext> options)
: base(options)

{

}

Az Entity Framework gyakorlat alapjdn hozzunk létre egy uj LocalDB adatbazist egy valasztott
névvel, pl. neptun kdéd, northwind, sth. Az SQL Server Object Explorer-b6l a connection string-et
lopjuk el. (nyissuk le az adatbaziskapcsolatot > jobbklikk az adatbazison > Properties > a
Properties ablakbdl a Connection String értéke).

Az appsettings.Development.json-ba vegyik fel a connection string-et és a generalt SQL
megfigyeléséhez a Microsoft kategdriaju naplok minimum szintjét csokkentsik Information-re.

/**/{
/**/ "Logging": {
/**/ "LogLevel": {

83

https://learn.microsoft.com/en-us/aspnet/core/migration/31-to-60

/*¥*/ "Default": "Information",
"Microsoft": "Information",
J**/ }
}, //vessz6 bekerilt
"ConnectionStrings": {
"DefaultConnection”: "<connection string>"

}
/**/}
Kukac (@) ilyenkor nem kell a connection string elé, mert ez JSON. Az
(r) adatbaziskapcsolatot azért kellhet lenyitni, hogy az SQL Server Object Explorer
- csatlakozzon is az uj adatbazishoz, ezutan tudjuk megszerezni a connection

stringet.

A connection string kilonleges karaktereit a beillesztés utdn a VS alapesetben

A automatikusan escape-eli. Ha az automatikus escape-elés mégsem torténik meg,
manualisan kell ezt megtenniink, kilonben A network-related or instance-specific
error occurred while establishing a connection to SQL Server hibat kaphatunk.

Adatbazis inicializalasa Code-First migracioval

Forditsuk a teljes solution-t, allitsuk be inditando (startup) projektnek az uj Web API projektet

(jobbklikk a projekten > Set as Startup Project). A Package Manager Console-t nyissuk meg, és
allitsuk be Default Project-ként a DAL projektet. Készittessik el a migraciot és futtassuk is le.

Add-Migration Init
Update-Database

Fontos, hogy a fenti parancs két projektet ismerjen: azt, amelyikben a kontext van,
A ill. a kontextet hasznalo futtathato projektet. A VS Package Manager Console-jaban

futtatva alapértelmezésben az el6bbit a Default Project értéke adja meg, utobbit az

inditando projekt. Tovabba ezeket a projekteket meg lehet adni paraméterként is.

Itt mutatkozik meg, hogy a migracié lényegében egy teljes alkalmazdasinditast
(2 . . ey e e e ve vz 7 . . ez
O jelent a Program osztdlyon keresztil: inicializalédik a DI konténer, a konfiguracios
- .

objektum stb.

Ellendrizzik az SQL Server Object Explorer-ben, hogy rendben lefutott-e a migracid, létrejottek-e az
adatbazis objektumok, feltoltédtek-e a tablak.

EF entitasok hasznalata az API feliileten

Bar architektura szempontbol nem a legszebb, a BLL réteget gyakorlatilag mell6zve kozvetlentl is
haszndlhatjuk az EF entitdsokat a kontrollerek megvaldsitdsanal. Ehhez hasznalhatjuk a Visual
Studio Entity Framework-0s Controller sablonjait.

84

https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/powershell#common-parameters

Adjuk hozzd az API projekthez a Microsoft.VisualStudio.Webh.CodeGeneration.Design NuGet
csomagot. Vdalasszunk olyan verziot, ami egyezik a DAL projekt Entity Framework Core
fliggdségének verziojaval.

PMC-ben telepitsiik az ASP.NET Core kodgeneralo eszkozt
dotnet tool install -g dotnet-aspnet-codegenerator
Majd lépjink be a projekt konyvtaraba
cd .\WebApilab.Api

Végil generdljunk a kodgeneraloval REST API (-api) kontrollert a Product entitdshoz (-m), mely az
AppDbContext kontextushoz (-dc) tartozik. A generalt osztaly neve legyen EFProductController (-name),
a WebApiLab.Api.Controllers névtérbe (-namespace) keriljon. A generalt fajl a Controllers mappaba (
-outDir) keruljon.

dotnet aspnet-codegenerator controller -m WebApilLab.Dal.Entities.Product -dc
WebApilLab.Dal.AppDbContext -outDir Controllers -name EFProductController -namespace
WebApilab.Api.Controllers -api

g Figyeljunk ra, hogy ne a Dtos névtérbél adjuk meg a DTO tipust a tényleges
entitastipus helyett.

A generdlds sordn Unable to create an object of type AppDbContext'. hibat
A kaphatunk. A hiba a kddgeneralo eszkézben keresendd, a kapcsolddo GitHub issue-
ban taldlunk egy lehetséges megoldast is a problémara.

A legeneral6do kontroller mar hasznélhatd is. Allitsuk 4t a z6ld nyil mellett az inditasi konfiguraciot
a projektnevesre, hogy ne IIS Express induljon és igy lassuk a konzolon a naploét. Inditsuk a
projektet és probdljuk példaul lekérni az sszes terméket az api/efproduct cimrél vagy a Swagger
feluletrol.

Erdemes a zold nyil melletti lenyilé meniiben olyan béngészét megadni (Chrome,

(;) Firefox), ami értelmes formaban meg tudja jeleniteni a nyers JSON adatokat, ha
nem Swagger feliletrol tesztelink.

Az alapértelmezésben megnyitandd URL utvonalat a projekt tulajdonsagok kozott

(r') adhatjuk meg: zold nyil melletti legordiilé menii > <Projektnév > Debug
- Properties. Ide egy a gyokércimhez képesti relativ utvonalrészt kell beirni. (pl.
api/efproduct)

Figyeljuk meg, hogy a controller a konstruktorban igényli meg a DI-t6l az EF kontextet, amit a
szokdsos modon osztalyvaltozoban tarol el.

85

https://github.com/dotnet/Scaffolding/issues/1875
https://github.com/dotnet/Scaffolding/issues/1875

Koztes réteg alkalmazasa

A rétegezett architektura elveit kovetve gyakori eljards, hogy a kontroller nem éri el kozvetlenil az
EF kontextet, hanem csak egy extra rétegen keresztil. A kontroller projekt igy figgetlenithet§ az EF
modellt6l.

Ehhez a megoldashoz készitsink kilon kontroller valtozatot. A Controllers mappaba hozzunk létre

egy kontrollert (Add » Controller > bal fiban Common » API > jobb oldalon API Controller with
read/write actions) ProductsController néven.

A BLL projekt Services mappajaba hozzunk l1étre egy uj osztalyt ProductService néven. Az Uj osztaly
kontroller szamdra nyujtanddé funkcidit az IProductService adja meg. Implementdljuk ezt az
interfészt, a kiindulé implementaciot generdaltassuk a Visual Studio-val. Konstruktorban varja a
fuggbségként a kontextet. A kontext segitségével implementdljuk normadlisan a GetProducts
fuggvényt. Eager Loading hasznalataval az egyes termékekhez a kapcsolodo Kkategoriat és
megrendeléseket is adjuk vissza.

public class ProductService : IProductService

{
private readonly AppDbContext _context;
public ProductService(AppDbContext context)
{
_context = context;
}
public IEnumerable<Product> GetProducts()
{
var products = _context.Products
.Include(p => p.Category)
.Include(p => p.ProductOrders)
.ThenInclude(po => po.0Order)
.TolList();
return products;
}
/*Tébbi fiiggvény generdlt implementaci6ja*/
¥

Injektaljunk IProductService-t a ProductsController-be.

private readonly IProductService _productService;

public ProductsController(IProductService productService)

{

_productService = productService;

}

86

Adjuk meg a DI alrendszernek, hogy hogyan kell egy IProductService tipusu fliggéséget 1étrehozni.
A legfelsd szintd kodba:

builder.Services.AddTransient<IProductService, ProductService>();

A fugg6séginjektalas ugy miikodik, hogy a kontrollereket is a kozponti DI komponens példanyositja,
és ilyenkor megvizsgalja a konstruktor paramétereket. Ha a konténerben taldl alkalmas
beregisztralt osztdlyt, akkor azt létrehozza és atadja a konstruktornak. Ezt hivjuk konstruktor
injektalasnak. Ha a létrehozandé fliiggdségnek is vannak konstruktor paraméterei, akkor azokat is
megprobdlja feloldani, igy rekurzivan a teljes fligg6ségi objektum hierarchiat le tudja kezelni (ha
abban nincs irdnyitott kor). Ezt hivjuk autowiring-nek.

A regisztracio soran tobb lehet6séglnk is van. Egyrészt nem kotelezd interfészt megadni egy osztaly
beregisztrdlasdhoz, az osztalyt 6nmagaban is be lehet regisztralni, ilyenkor a konstruktorban is
osztalyként kell elkérni a fugg6ségeket.

Haromféle példanyositasi stratégiaval regisztralhatjuk be az osztdlyainkat:

* Transient: minden egyes injektdlds soran uj példany jon létre

* Scoped: HTTP kérésenként egy példany keril létrehozasra és a kérésen belil mindenkinek ez
lesz injektalva

+ Singleton: mindenkinek ugyanaz az egy példany kertil atadasra kéréstél fliiggetlentil

frjunk 1j Get() valtozatot az eredeti helyett a ProductsController-be az IProductService fiiggéséget
felhasznalva:

[HttpGet]
public IEnumerable<Product> Get()
{

return _productService.GetProducts();

}

Probdljuk ki (api/products). Hibat kapunk, mert a ProductService lekérdez6 fliggvénye eager
loading-gal (Include) navigacids property-ket is kitolt, igy konnyen hivatkozasi kor jon létre, amit a
JSON sorositd alapértelmezésben Kkivétellel jutalmaz. A sorositast a Kkeretrendszer végzi, a
kontrollerfiiggvény visszatérési értékét sorositja a HTTP tartalomegyeztetési szabalyok szerint.
Bongészd kliens esetén alapesetben a JSON formatum lesz a befutd. Persze a sorositds ennél
kozvetlenebbiil is konfiguralhato, ha sziikséges.

A kontrollerek altal haszndlt JSON sorositot konfiguralhatjuk a legfels6 szintdi kodban, példaul
beallithatjuk, hogy ha egy objektumot mar korabban sorositott, akkor csak hivatkozzon ra és ne
sorositsa ujra.

/**/builder.Services.AddControllers() //; tordlve
.AddJsonOptions(o => o.JsonSerializerOptions.ReferenceHandler = ReferenceHandler
.Preserve);

87

https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/formatting

fgy mar sikeriilni fog a sorositas, egy elég furcsa JSON-t lathatunk, ahol az elsé elem egy nagyobb
objektumgrafot leird rész, a tobbi elem pedig csak hivatkozas.

Ennek a megoldasnak a hatranya, hogy a kliensoldali sorositonak is tAmogatnia kell ezt a sorositasi
logikat, a JSON-on beluli kereszthivatkozasok kezelését.

Emiatt kommentezziik is ki ezt a bedllitast, keressiink mas megoldast.

DTO osztalyok

Lathattuk, hogy az entitastipusok kozvetlen sorositdsa gyakran nehézségekbe ttkozik. A modell
kifejezetten az EF szamara lett megalkotva, illetve hogy a lekérdezd miiveleteket minél
kényelmesebben végezhessik. A kliensoldal szamara érdemes kilon modellt megalkotni, egy un.
DTO (Data Transfer Object) modellt, ami a kliensoldal igényeit veszi figyelembe: pontosan annyi
adatot és olyan szerkezetben tartalmaz, amire a kliensnek sziiksége van.

A BLL projektben jelenleg egy nagyon egyszer(li DTO modell taldlhato a Dtos mappaban:

* rekord tipusok alkotjak a modellt
* nincs benne minden navigacids property, pl. Category.Products
* nincs benne a kapcsolotablat reprezentalo entitds
* a termékbdl kozvetlentl elérhet6k a megrendelések
A kulonféle modellek kozotti leképezésnél jol jonnek az un. object mapper-ek, melyek segitenek

elkertiilni a leképezésnél nagyon gyakori repetitiv kodokat, mint amilyen az x.Prop = y.Prop jellegii
propertyérték-masolgatas.

Adjuk hozza az API projekthez az AutoMapper.Extensions.Microsoft.Dependencylnjection csomagot,
a BLL projekthez pedig az AutoMapper csomagot.

A leképezési konfigurdciokat profilokba szervezve adhatjuk meg. Adjunk hozza a BLL projekthez
egy Uj osztalyt WebApiProfile néven a Dtos mappaba. Az AutoMapper konvencio alapon mkodik,
tehat a DTO-entitds parokon kivil nem kell megadni példaul egyesével a property- vagy
konstruktorparaméter-leképezéseket, ha a nevek alapjan a leképezés kikovetkeztethetd. Kulon
konfigurdlasra csak a nem-trividlis esetekben van sziikség.

using AutoMapper;
namespace WebApilab.B11.Dtos;

public class WebApiProfile : Profile

{
public WebApiProfile()
{
CreateMap<Dal.Entities.Product, Product>().ReverseMap();
CreateMap<Dal.Entities.Order, Order>().ReverseMap();
CreateMap<Dal.Entities.Category, Category>().ReverseMap();
}

88

A DI konténerhez adjuk hozza és konfiguraljuk a leképezési szolgaltatast.

builder.Services.AddAutoMapper (typeof (WebApiProfile));

Az AutoMapper az AddAutoMapper paramétereként megadott tipust definidld
O szerelvényben fogja a profilt keresni. A konkrét tipusnak nincs mas jelentdsége,
v nem Kkell feltétlenil profilnak lenni.

Injektaltassuk be a leképzdt reprezentalod IMapper tipusu objektumot a ProductService-be.

/**/private readonly AppDbContext _context;
private readonly IMapper _mapper;
/**/
/**/public ProductService(AppDbContext context
, IMapper mapper)

/**/{

/**/ _context = context;
_mapper = mapper;

/**/}

A ProductsController-ben, az IProductService-ben és a ProductService-ben az entitdsokra mutato
névteret cseréljuk ki a DTO-kra mutatora:

//using WebApilLab.Dal.Entities;
using WebApilab.B11.Dtos;

frjuk at a lekérdezést a ProductService-ben a leképzét alkalmazva:

/**/public IEnumerable<Product> GetProducts()

/**/{

/**/ var products = _context.Products
.ProjectTo<Product>(_mapper.ConfigurationProvider)
.AsEnumerable();

/**/ return products;

/**/}

Hogy ne zavarjanak be a Swaggernek az EFProductController-ben hasznalt entitds osztalyok,
toroljik ki a Controllers mappabol az EFProductController-t!

Probaljuk ismét meghivni bongész6bdol, figyeljik meg a naploban, hogy milyen SQL lekérdezés fut
le.

@ i . p s . . . s
Q A tobbrétegli architekturdnal elméletben minden rétegnek kilon

89

objektummodellje kellene, hogy legyen DAL: EF entitdsok, BLL: domain
objektumok, Kontroller: DTO-Kk, viszont ha a domain objektumok nem visznek
plusz funkciot a rendszerbe, akkor el szoktuk hagyni.

A DTO leképezést mas réteghben is végezhetnénk. Egyes megkozelitések szerint a kontroller réteg
feladata lenne, azonban, ha az EF lekérdezésekkel oOsszevonva végezzik a leképezést, akkor
kiaknazhatjuk a query result shaping elényeit, azaz csak azt kérdezzik le az adatbazisbol, amire a
leképezésnek sziiksége van. Az AutoMapper ProjectTo fliggvénye rdaddsul mindezt el is intézi
helyettiink a leképezési konfigurdcié alapjan.

A ProjectTo specidlisan IQueryable-en miikodik. Ha csak siman memoriabeli
objektumok kozott szeretnénk leképezni, akkor az IMapper Map<> fiiggvényét hivjuk.
(r) A memoriabeli leképezésnek hatrdnya, hogy EF szinten gondoskodnunk kell rola,
et hogy Include hivasokkal a leképezéshez sziikséges kapcsolodo entitasokat is
lekérdezzik. A ProjectTo ezt is elintézi helyettink.

A ProjectTo metodust felfoghatjuk a tovabbiakban egy LINQ-s Select() operatornak, annyi
kulonbséggel, hogy az AutoMapper generdlja azt az Expression-t, ami alapjan el6all majd az
eredmény.

BLL funkciok implementacioja

Egy elem lekérdezése

Valésitsunk meg tovabbi interfész altal eldirt funkcidkat a ProductService osztalyban:

/**/public Product GetProduct(int productId)

/**/{
return _context.Products
.ProjectTo<Product>(_mapper.ConfigurationProvider)
.SingleOrDefault(p => p.Id == productId)
?? throw new EntityNotFoundException("Nem talalhat6 a termék");
/**/}
Beszuras

Ez hasonlé az EF gyakorlaton latottakhoz, csak itt nem kell legyartanunk az 4j Product példanyt,
parameéterként kapjuk és memoriaban leképezzik az enititasra. A SaveChanges hivas utan a kulcs
értéke mar ki lesz toltve (adatbazis osztja ki a kulcsot).

/**/public Product InsertProduct(Product newProduct)
/**/{
var efProduct = _mapper.Map<Dal.Entities.Product>(newProduct);
_context.Products.Add(efProduct);
_context.SaveChanges();
return GetProduct(efProduct.Id);

90

https://en.wikipedia.org/wiki/Domain_model
https://en.wikipedia.org/wiki/Domain_model

/**/}

Modositas

Konvenciod szerint killon paraméterként szoktdk atadni a mddositando elem azonositéjat és az Uj
értékeket 6sszefogo példanyt. Leképezés utan osszedllitunk egy olyan entitds példanyt, mint amilyet
az adatbazisbol kérdeztink volna le - viszont ez a példany nem lesz a kontext latokorében. Az
Attach fliggvény hasonld az Add-hoz, hozzdadja a kontext nyilvantartasahoz a példanyt, de az Attach
alapesetben nem jeloli meg a stdtuszt, marad valtozatlan (Unchanged). Explicit megjeldljik
valtozottként, a valtozast végul a SaveChanges érvényesiti.

/**/public void UpdateProduct(int productId, Product updatedProduct)

/**/{
var efProduct = _mapper.Map<Dal.Entities.Product>(updatedProduct);
efProduct.Id = productld;
_context.Attach(efProduct).State = EntityState.Modified;
_context.SaveChanges();

/**/}
Alternativa lehetne még ennél a fiiggvénynél, hogy lekérdezzik azonosito (Id)
@ alapjan az entitast és AutoMapperrel a lekérdezett objektumba mappeljik a DTO-t.
- Ebben az esetben nincs sziikség Attach-ra és allapotkezelésre sem, viszont extra
lekérdezéssel jar.
Torlés

Egy triikkel elkertilhetjik, hogy le kelljen kérdezni a torlend6 terméket. Az azonosité alapjan
el6allitunk memoridban egy példanyt a megfeleld kulccsal, majd Remove fliggvénnyel hozzdadjuk a
kontexthez. A Remove torlenddnek jeloli a példanyt.

/**/public void DeleteProduct(int productId)

/**/{
_context.Products.Remove(new Dal.Entities.Product(null!) { Id = productld });
_context.SaveChanges();

/**/}

REST konvenciok alkalmazasa

A REST megkozelités nem csak atviteli kozegnek tekinti a HTTP-t, hanem a protokoll részeit
felhaszndalja, hogy kiegészitd informadciokat vigyen at. Emiatt el6ny0s lenne, ha nagyobb
ellen6rzésiunk lenne a HTTP valasz felett - szerencsére az ASP.NET Core biztositja ehhez a megfeleld
API-kat.

Egyik legegyszerlibb ilyen irdnyelv, hogy a lekérdezések eredményeként, ha megtalaltuk és
visszaadtuk a kért adatokat, akkor 200 (OK) HTTP valaszkddot adjunk.

91

O A HTTP kérést érint6 iranyelvekrol egy jo 0sszefoglalo elérhet? itt.

w
Az eddig megirt Get() fliggvényink most is 200 (OK)-ot ad, ezt le is ellendrizhetjiik a bongészénk
hdaldzati monitorozo eszkozében.

A HTTP kommunikacié megfigyelésére hasznalhatjuk a bongészdék beépitett
eszkozeit, mint amilyen a Firefox Developer Tools, illetve Chrome DevTools.
Altaldban az F12 billentyiivel aktivdlhatok. Emellett, ha egy teljesértékii HTTP

@ kliensre van sziikségunk, amivel példdul konnyen tudunk nem csak GET kéréseket
kildeni, akkor a Postman és a Fiddler Classic kulon telepitendd eszkdzok
ajanlhatok. A Fiddler mint proxy megoldds egy Windows gépen folyé HTTP
kommunikacio megfigyelésére is alkalmas.

Els6 korben a két lekérdez6 fliggvényt irjuk at ugy, hogy a HTTP valaszkddokat explicit megadjuk. A
jelenlegi legmodernebb mod ehhez az ActionResult<> haszndlata. Elég T-t visszaadnunk a
fuggvényben, automatikusan ActionResult<T> tipussad konvertalddik. Tehat elvileg irhatnank ezt:

//NEM FORDUL!
/**/[HttpGet]
public ActionResult<IEnumerable<Product>> Get()
//ActionResult<T> visszatérési érték
/**/{
/**/ return _productService.GetProducts();
/**/}

Azonban ez nem fordul, mert interfész tipus esetén nem miikodik a konverzid. Konkrét tipust, pl.
egy listat kell megadnunk.

/**/[HttpGet]
/**/public ActionResult<IEnumerable<Product>> Get()
/**/{
return _productService.GetProducts().TolList(); //Tolist bekerilt
/**/}

frjuk meg ugyanigy a masik Get fiiggvényt is:

/**/[HttpGet("{id}")]
public ActionResult<Product> Get(int id)
//ActionResult<Product> visszatérési érték
/**/{
return _productService.GetProduct(id);
/**/}

Probdljuk ki mindkét kontroller fliggvényt (api/products, api/products/1), ellen6rizzik a
statuszkodokat is.

92

https://www.restapitutorial.com/lessons/httpmethods.html
https://developer.mozilla.org/en-US/docs/Tools
https://developers.google.com/web/tools/chrome-devtools/
https://www.getpostman.com/
https://www.telerik.com/download/fiddler

Ami fura, hogy még mindig nem allitottunk explicit statuszkdédokat. A logikank most még nagyon
egyszer(, csak a hibamentes agat kezeltiik, igy eddig az ActionResult alapértelmezései megoldottak,
hogy 200 (OK)-ot kapjunk.

Most viszont kovetkezzen egy 1étrehozd miivelet:

/**/[HttpPost]
public ActionResult<Product> Post([FromBody] Product product)
//ActionResult<T> visszatérési érték + Product paraméter
/**/{
var created = _productService.InsertProduct(product);
return CreatedAtAction(nameof(Get), new { id = created.Id }, created);
/**/}

Itt mar latszik az ActionResult haszna. A konvencionak megfelelen 201-es kddot akarunk
visszaadni. Ehhez a ControllerBase Ososztaly biztosit segédfiiggvényt. A segédfiiggvény olyan
ActionResult leszdarmazottat ad vissza, ami 201-es kddot szolgdltat a kliensnek. Masik konvencid,
hogy a Location HTTP fejlécben legyen egy URL az 4j termék lekérdez6é miveletének meghivasahoz.
Ezt az URL-t rakjuk 6ssze a CreatedAtAction paraméterei révén.

Gyakori, hogy a lefele irdnyd kommunikdacié sordn (kliens felé) bdvebb adathalmaz keriil
lekiildésre, mint amit egy létrehozaskor vagy maddositaskor varunk. Esetiinkben is az Orders és a
Category propertyk létrehozaskor feleslegesek. Erre a célra jobb egy kiillon DTO-t 1étrehozni, ami
csak a megfelel6 adatokat tartalmazza. Most ideiglenesen tegyik nullozhatdva ezt a két propertyt.

public record Product

{
/*tobbi property*/
public Category? Category { get; init; } //7? médositd bekeriilt
public List<Order>? Orders { get; init; } //7 modositd bekerilt
¥

Probaljuk ki a miiveletet Swagger feluiletr6l. Egy Product-ot kell felkiildentink. Erre egy példa érték:

{
"Name" : "P&linka",
"UnitPrice" : 4000,
"ShipmentRegion" : 1,
"CategoryId" : 1

}

Ha Fiddlerbél vagy Postmanbdl teszteliink, ne felejtsiik el a Content-Type fejlécet
A application/json-re allitani! Figyeljuk meg a kapott valaszt. A valaszbdl masoljuk
ki a Location fejléch6l az URL-t és hivjuk meg bongészdbal.

Fiddler Classic példa POST hivdsra:

93

4 Progress Telerik Fiddler Web Debugger - O *
File Edit Rules Tools VWiew Help

|||||

28 WinCenfig C) 44 Replay X~ b Go ‘ Stream iiiDecode | Keep: All sessions = &5 Any Process 33 Find [&] Save @ @ (& Browse ~

-

Result Protocol Host URL Fidder OrchestraBeta 3% FiddlerScript [E] Log] Filters = Timeline
@549 201 HTTE localhost: 5000 Japijproducts Get Started @ Statistics ;X Inspectors j AutoR.esponder @ Composer
Use this page to compose a Request. You can clone a prior request by dragging and
: . S Bxecute
dropping a session from the Web Sessions list.
Parsed Raw Scratchpad Options
POST Moz 1o calhost: 5000 /2pijprocucts | N ELRTE Y v | [LogRequests
Content-Type: applicationjson History
Host: localhost: 5000 [localhost: 5000,
ContentLength: 104 @Iomlhost: 058
i localhost: 5000,
@Iomlhost: 5000,
i localhost: 5000,
localhost: 7071,
RequestBody Upload file...
Mame"” : "Pélinka”,
"UnitPrice™ : 4000,
"ShipmentRegion™: 1,
"Categoryld™: 1
£ > < >
= All Processes 1

A mddosito, torlé miiveleteknél a konvencié megengedi, hogy tures torzsd (body) valaszt adjunk,
ilyenkor a valaszkod 204 (No Content). Ilyesfajta valasz elallitasahoz is van segédfuiggvény, illetve
elég csak az ActionResult tipust megadni visszatérési tipusnak:

/**/[HttpPut("{id}")]
public ActionResult Put(int id, [FromBody] Product product)
//ActionResult visszatérési érték + Product paraméter
/**/{
_productService.UpdateProduct(id, product);
return NoContent();
/**/}

/**/[HttpDelete("{id}")]
public ActionResult Delete(int id)
//ActionResult visszatérési érték

/**/{
_productService.DeleteProduct(id);
return NoContent();
/**/}
PUT mellett a mdodositashoz hasznalatos a PATCH is. A PUT konvencio szerint teljes,
mig a PATCH részleges felilirdsndl haszndlatos. PATCH esetén altalaban
@ valamilyen patch formatumu adatot kild a kliens, pl. RFC 6902 - JSON Patch. A
et JSON Patch formatumot jelenleg csak a JSON kordbbi sorosité (Newtonsoft.Json)
tdmogatja.

94

https://tools.ietf.org/html/rfc6902
https://docs.microsoft.com/en-us/aspnet/core/web-api/jsonpatch

Gyakori, hogy a PUT miivelet esetében nem 204 No Content valasszal térink
(;) vissza, hanem 200 OK statuszkoddal és a modositott er6forrassal, hogy a kliens a
tényleges érvényre jutott értékekkel befrissithesse a sajat adatait.

Probaljuk kitorolni az ujonnan felvett terméket Swaggerbdl/Fiddler-b6l/Postman-b6l (DELETE igés
kérés az api/products/<dj id> cimre, ures torzzsel). Sikertlnie kell, mert még nincs ra idegen kulcs
hivatkozas.

Hibakezelés

Eddig f6leg csak a hibamentes dgakat (happy path) néztiik. A REST konvenciok rendelkeznek arrol
is, hogy bizonyos hibahelyezetekben milyen HTTP valaszt illik adni, példdul ha a kérésben
hivatkozott azonosito nem létezik - 404-es hiba a bevett eljaras. Statuszkodok szempontjabol a
korabban idézett oldal ad segitséget, a valasz torzsében a hibatlizenet szerkezete tekintetében az
RFC 7807 ad iranymutatdst az un. Problem Details tipusu valaszok bevezetésével. Az ASP.NET Core
2.1-es verzié Ota tadmogatja a Problem Details valaszokat, és altalaban automatikusan ilyen
valaszokat kuld.

400 Bad Request

Kezdjuk a kliens altal kildott nem helyes adatokkal. Ez a hibakod nem 6sszekeverendd a 415-tel,
ahol az adat formatuma nem megfelel6 (XML vagy JSON): ezt altaldban nem kell kézzel lekezeljuk,
mivel ezt az ASP.NET megteszi helyettiink. 400-zal olyan hibakat szoktunk lekezelni, ahol a kildott
adat formatuma megfeleld, de valamilyen sajat validaciés logikdnak nem felel meg a kapott
objektum, pl.: egységar nem lehet negativ stb.

Itt hasznaljuk fel a .NET un. Data Annotation attributumait, amiket a DTO-kon érvényesithetink, és
az ASPNET Core figyelembe vesz a miivelet végrehajtdsa soran. Vegyunk fel a Product DTO
osztalyban néhany megkotést attributumok formajaban.

[Required(ErrorMessage = "Product name is required.", AllowEmptyStrings = false)]
/**/public string Name { get; init; } = null!;

[Range(1, int.MaxValue, ErrorMessage = "Unit price must be higher than 0.")]
/**/public int UnitPrice { get; init; }

Probaljuk ki egy POST /api/Products miivelet meghivasaval. Paraméterként kiindulhatunk a felulet
altal adott minta JSON-bOl, csak toroljuk ki a navigacios property-ket és sértsik meg valamelyik
(vagy mindkét) fenti szabdlyt. Egy példa torzs:

{
"Name" : "",
"UnitPrice" : 0,
"ShipmentRegion" : 1,
"CategoryId" : 1

+

95

https://httpstatuses.com
https://tools.ietf.org/html/rfc7807
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation#built-in-attributes
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation#built-in-attributes

A valasz 400-as kdd és valami hasonld, RFC 7807-nek megfeleld torzs lesz:

{
"type": "https://tools.ietf.org/html/rfc7231#section-6.5.1",
"title": "One or more validation errors occurred.",
"status": 400,
"traceld": "|2f35d378-4420cbafb80aecd4.",
"errors": {
"Name": [
"Product name is required."
1
"UnitPrice": [
"Unit price must be higher than 0."
]
}
}

404 Not Found - kontroller szinten

Konvencid szerint 404-es hibat kellene adnunk, ha a keresett azonositéval nem talalhatd er6forras -
esetinkben termék. Jelenleg a ProductService EntityNotFoundException-t dob, és amennyiben
Development modban futtatjuk az alkalmazast, a cifra hibaoldal jelenik meg, amit a
DeveloperExceptionPage middleware generdl. Ha kivessziik a middleware-t (vagy nem Development
modban inditjuk, de ekkor gondoskodnunk kell connection string-rél, ami eddig csak a
Development konfiguracioban volt bedllitva), akkor 500-as hibat kapunk vissza.

A Kkezeletlen kivételek altalaban 500-as hibakéd formdjdban kertilnek vissza a
kliensre, mindenfajta egyéb informdcié nélkil (iires oldalként jelenik meg). Ez a
jobbik eset, ahhoz képest, ha a teljes kivételszoveg és stack trace is visszakertlne.

A Az atlagos felhasznalok nem tudjak értelmezni, viszont a tdmado szandékuaknak
értékes informaciot jelenthet, igy ajanlott elkertiilni, hogy a kivétel ilyen médon
kijusson. Ez az elkerilés az ugynevezett exception shielding technika, és az
ASP.NET Core alapértelmezetten alkalmazza.

Legegyszerlibb mddszer a kontroller miiveletben érvényesiteni a konvenciot:

/**/[HttpGet("{id}")]
/**/public ActionResult<Product> Get(int id)

/**/{
try
{
/**/ return _productService.GetProduct(id);
}
catch (EntityNotFoundException)
{

return NotFound();

}

96

/**/}

Alternativ megoldds, hogy a ProductService egy null értékkel jelezné, hogy nincs
(;) taldlat. Ezesetben a fenti kddban a null értékre kellene vizsgdlni, pl. if
et szerkezettel.

Probaljuk ki, hogy 404-es statuszkodot és annak megfelel6 problem details-t kapunk-e, ha egy nem
l1étez0 termékazonositoval hivjuk a fenti miveletet.

Ha sajat problem details-t szeretnénk a 404-es kod mellé, akkor kézzel Osszerakhatjuk és
visszakuldhetjuk.

/**/catch (EntityNotFoundException)

/**/{
ProblemDetails details= new ProblemDetails
{
Title = "Invalid ID",
Status = StatusCodes.Status404NotFound,
Detail = $"No product with ID {id}"
I
return NotFound(details); //ProblemDetails atadasa
/**/}

fgy is probaljuk ki. Az altalunk megadott tizenetet kell visszakapjuk.

404 Not Found - globalis kivételleképezéssel

A rendhagyd valaszok elfallitdsdandl el6nyos lehet, ha az alacsonyabb rétegekbdl specifikus
kivételeket dobunk, mert ezeket egy kozponti helyen szisztematikusan atalakithatjuk konvencionak
megfelel6 HTTP valaszokka. Ez a képesség egyelére még nem érhetd el beépitetten, ezért egy
kozosségi fejlesztésti NuGet csomagot hasznalunk fel.

Telepitsiik fel a Hellang.Middleware.ProblemDetails csomagot az API projektbe. Megtehetjik a
szokdsos modon, de akar a Package Manager Console-bdl is a kovetkezd paranccsal (az API projekt
legyen megadva, mint Default Project):

Install-Package Hellang.Middleware.ProblemDetails

Szokas szerint konfiguraljuk a legfelsé szintli kodban. Sose adjuk vissza a kivétel részleteit (szigoru
exception shielding), illetve a sajat kivételtipusunkat képezziik le 404-es hibara.

builder.Services.AddProblemDetails(options =>

{

options.IncludeExceptionDetails = (ctx,ex) => false;
options.MapToStatusCode<EntityNotFoundException>(StatusCodes.Status404NotFound);
});

97

https://github.com/khellang/Middleware

llesszlik a pipeline-ba a legels6 helyre:

/**/var app = builder.Build();
app.UseProblemDetails();

Térjunk vissza a kordbbi, nem kivétel-elkapos valtozatra, az el6z6t kommentezzuk ki:

[HttpGet("{id}")]
public ActionResult<Product> Get(int id)
{

return _productService.GetProduct(id);

}

Probaljuk ki: hasonléan kell mikodjon, mint a kontroller szintli valtozat, de ez &altalanosabb,
barmely mitveletbdl EntityNotFoundException érkezik, azt kezeli, nem kell minden mitiveletben
megirni a kezel6 logikat.

500 Internal Server Error

Probaljunk kitorolni egy nem létezd terméket DELETE api/products/<nem létez6 id> kéréssel. Az
ygjonnan beallitott MW a nem kezelt kivétel esetén is egy alapszinti Problem Details valaszt allit el
500-as koddal.

Azonositok ellenorzése

Készitsiik fel a modositd és torl6 miveleteket is a nem létezd azonositék konvencid szerinti
kezelésére.

/**/public void UpdateProduct(int productId, Product updatedProduct)

/**/{
/**/ /*...*/
try
{
/**/ _context.SaveChanges();
}
catch (DbUpdateConcurrencyException)
{
if (!_context.Products.Any(p => p.Id == productld))
throw new EntityNotFoundException("Nem talalhaté a termék");
else
throw;
}
/**/}
/**/public void DeleteProduct(int productId)
/**/{
/**%/ VI |

98

try

{
/**/ _context.SaveChanges();
}
catch (DbUpdateConcurrencyException)
{
if (!_context.Products.Any(p => p.Id == productld))
throw new EntityNotFoundException("Nem talalhat6 a termék");
else
throw;
}

/**/}

Ez egy optimista megkozelités: feltételezziik, hogy helyes azonositot kapunk. Ha kivételes esetben
mégsem, akkor az UPDATE/DELETE utasitds nem a megfelel6 szamu sort modositja és
DbUpdateConcurrencyException-t kapunk. Ekkor vizsgaljuk csak meg, hogy az azonositd helyes-e.

Egy masik megkozelités szerint a DELETE miveletnek idempotensnek kellene

lennie, tehat egymas utan tobbszor végrehajtva is sikeres eredményt kell kapjunk.
O Ez azt is jelenti, hogy 404-es hiba helyet 204 No Content statuszkodot Kkell
et kiildentink akkor is, ha nem taldlhaté adott ID-val entitds. Ezt a jelenlegi kédban

egyszerlen implementalhatjuk, hogy nem dobunk kivételt a megfelel6 agban.

Sajat hibauizenet

Moddositsuk a hibakezeld6 MW konfiguraciojat a legfelsd szintli kddban, hogy a kivétel szdvege
bekeriljon a valaszba. Ez akkor lehet hasznos, ha a felhasznalonak kiirando hibatizenetet is vissza
akarjuk kildeni (masik lehet0ség, hogy a kliens allitja eld, pl. a statuszkdd alapjan).

/**/builder.Services.AddProblemDetails(options =>
/**/{
/**/ options.IncludeExceptionDetails = (ctx, ex) => false;
options.Map<EntityNotFoundException>(
(ctx, ex) =>

{
var pd=StatusCodeProblemDetails.Create(StatusCodes.Status404NotFound);
pd.Title = ex.Message;
return pd;

+

)
/**/});

Az exception shielding elv miatt csak olyan Kkivételeknél alkalmazzuk, ahol a
A felhasznalok szdmdra hasznos, de nem technikai jellegli informdciot tartalmaz a
kivétel szovege.

Probaljuk ki, hogy az egy termék lekérdezésénél, a modositasndl és a torlésnél is a rossz azonosito

99

egységesen miikodik-e: 404-es hibat ad vissza, a Problem Details-ben a kivétel szovegével.

Aszinkron muveletek

Aszinkron miiveletek alkalmazasaval hatékonysdgjavulast érhetiink el: nem feltétlenll az egyes
miveleteink lesznek gyorsabbak, hanem iddegység alatt tobb miveletet tudunk kiszolgalni. Ennek
oka, hogy az await-nél (példaul egy adatbazis miivelet elkildésekor) a varakozasi idejére torténd
kiugrasndl, ha vissza tudunk ugrdlni egészen az ASP.NET engine szintjéig, akkor a végrehajto
kornyezet a kiszolgdlo szalat a varakozds idejére mas kérés kiszolgalasara felhaszndlhatja.

Q

OKkoélszabaly, hogy ha elkételeztilk magunkat az aszinkronitids mellett, akkor ha
megoldhatd, az aszinkronitast vezessuk végig a kontrollert6l az adatbazis miivelet
végrehajtasaig minden rétegben. Ha egy API-nak van TAP jellegl valtozata, akkor
azt részesitsik elonyben (pl. SaveChanges helyett SaveChangesAsync). Ha
aszinkronbdl szinkronba valtunk, csokkentjik a hatékonysagot, rosszabb esetben
deadlock-ot is el6idézhetunk.

Vezessuk végig az aszinkronitast egy miivelet teljes végrehajtasan:

// Service réteg - interfész

/**/public interface IProductService

/**/{

//public void UpdateProduct(int productld, Product updatedProduct);
public Task UpdateProductAsync(int productId, Product updatedProduct);
/**/ //tébbi fv.
/**/}

// Service réteg - implementacid

public async Task UpdateProductAsync(int productId, Product updatedProduct)
/**/{
/**/ var efProduct = _mapper.Map<Dal.Entities.Product>(updatedProduct);
/**/ efProduct.Id = productld;
/**/ _context.Attach(efProduct).State = EntityState.Modified;
/*¥*/

/**/ try
/%% {

await _context.SaveChangesAsync(); //async valtozat hivasa
J**/ }
/**/ catch (DbUpdateConcurrencyException)
J**/ {
/**/ if (lawait _context.Products

.AnyAsync(p => p.Id == productld))

//async valtozat hivasa
/**/ throw new EntityNotFoundException("Nem talalhat6 a termék");
/**/ else
/**/ throw;
/*%/ }

100

https://blog.stephencleary.com/2012/07/dont-block-on-async-code.html

/**/}

// Kontroller réteg

public async Task<ActionResult> Put(int id, [FromBody] Product product)

/**/{
/**/ await _productService.

/**/

.UpdateProductAsync(id, product);
//async valtozat hivasa
return NoContent();

/**/}

g Az Async végz6dés alkalmazdsa kontroller miiveletek nevében jelenleg nem

ajanlott, mert konnyen hibakba futhatunk.

Probaljuk ki, példaul kuldjunk PUT-ot az api/products/1 cimre, allitsuk be a Content-Type:
application/json fejlécet és a POST-ndl haszndlt JSON-t kuldjiik a torzsben. Ezzel az 1-es id-jli termék
adatait fogjuk felulirni.

Végallapot

A tobbi miveletet aszinkronizalva az alabbi a végallapot (elérhet6 a kapcsolodé GitHub repo net6-
0s agan is):

public interface IProductService

{

}

public Task<Product> GetProductAsync(int productld);

public Task<IEnumerable<Product>> GetProductsAsync();

public Task<Product> InsertProductAsync(Product newProduct);

public Task UpdateProductAsync(int productId, Product updatedProduct);
public Task DeleteProductAsync(int productId);

public class ProductService : IProductService

{

private readonly AppDbContext _context;
private readonly IMapper _mapper;

public ProductService(AppDbContext context, IMapper mapper)
{

_context = context;
_mapper = mapper;

}

public async Task<Product> GetProductAsync(int productId)
{

return await _context.Products
.ProjectTo<Product>(_mapper.ConfigurationProvider)

101

https://github.com/dotnet/aspnetcore/issues/8998
https://github.com/bmeaut/WebApiLab/tree/net6
https://github.com/bmeaut/WebApiLab/tree/net6

.SingleOrDefaultAsync(p => p.Id == productId)
?? throw new EntityNotFoundException("Nem talalhat6 a termék");

}
public async Task<IEnumerable<Product>> GetProductsAsync()
{
var products = await _context.Products
.ProjectTo<Product>(_mapper.ConfigurationProvider)
.ToListAsync();
return products;
}
public async Task<Product> InsertProductAsync(Product newProduct)
{
var efProduct = _mapper.Map<Dal.Entities.Product>(newProduct);
_context.Products.Add(efProduct);
await _context.SaveChangesAsync();
return await GetProductAsync(efProduct.Id);
}
public async Task UpdateProductAsync(int productId, Product updatedProduct)
{
var efProduct = _mapper.Map<Dal.Entities.Product>(updatedProduct);
efProduct.Id = productld;
var entry = _context.Attach(efProduct);
entry.State = EntityState.Modified;
try
{
await _context.SaveChangesAsync();
}
catch (DbUpdateConcurrencyException)
{
if (lawait _context.Products.AnyAsync(p => p.Id == productld))
throw new EntityNotFoundException("Nem talalhat6 a termék");
else
throw;
}
}

public async Task DeleteProductAsync(int productId)
{

_context.Products.Remove(

new Dal.Entities.Product(null!) { Id = productld });
try
{

await _context.SaveChangesAsync();

}
catch (DbUpdateConcurrencyException)

{
if (lawait _context.Products.AnyAsync(p => p.Id == productld))

102

}

throw new EntityNotFoundException("Nem talalhat6 a termék");
else
throw;

[Route("api/[controller]")]
[ApiController]
public class ProductsController : ControllerBase

{

private readonly IProductService _productService;

public ProductsController(IProductService productService)

{

_productService = productService;

}

// GET: api/<ProductsController>

[HttpGet]

public async Task<ActionResult<IEnumerable<Product>>> Get()
{

return (await _productService.GetProductsAsync()).TolList();

}

// GET api/<ProductsController>/5
[HttpGet("{id}")]
public async Task<ActionResult<Product>> Get(int id)
{
return await _productService.GetProductAsync(id);

}

// POST api/<ProductsController>
[HttpPost]
public async Task<ActionResult<Product>> Post([FromBody] Product product)
{
var created = await _productService.InsertProductAsync(product);
return CreatedAtAction(nameof(Get), new { id = created.Id }, created);

}

// PUT api/<ProductsController>/5
[HttpPut("{id}")]
public async Task<ActionResult> Put(int id, [FromBody] Product value)
{
await _productService.UpdateProductAsync(id, value);
return NoContent();

}

// DELETE api/<ProductsController>/5
[HttpDelete("{id}")]
public async Task<ActionResult> Delete(int id)

103

await _productService.DeleteProductAsync(id);
return NoContent();

104

ASP.NET Core webszolgaltatasok III.

Kiegészito anyagok, segédeszkozok

» kapcsolddo GitHub repo: https://github.com/bmeaut/WebApiLab
o elég csak zip-ként letolteni a netb-client-init agat, nem kell klénozni
» NSwag Studio - itt is elég csak a legfrissebb zip verziot az Assets részrol letolteni

e Postman HTTP kérések kiildéséhez

Kiindulo projektek beuizemelése

Csak ki kell csomagolni a zip-et, ez az el6z6 gyakorlat folytatdsa - a kddot ismerjik. Ha nincs mar
meg az adatbazisunk, akkor az el6z0 gyakorlat alapjan hozzuk létre az adatbazist Code-First
migracioval (Update-Database).

Egyszeri kliens

A targy tematikdjdnak ugyan nem része a kliensoldal, de demonstracids céllal egy egyszeri
kliensoldalrdl inditott hivast implementdlunk. A webes API-khoz nagyon sokféle technikaval
irhatunk klienst, mivel gyakorlatilag csak két képességgel kell rendelkezni:

* HTTP alapu kommunikacio, HTTP kérések kiildése, a valasz feldolgozasa

* JSON sorositas

A fentiekhez szinte minden manapsag hasznalt kliensoldali technoldgia ad tdmogatast. Mi most egy
sima, .NET 6 alapu konzol alkalmazast irunk kliens gyanant.

A két képességet konnyen lefedhetjik a System.Net.Http (HTTP kommunikéicio) és a
System.Text.Json (JSON sorositds) csomagokkal. Mindkett§ a Microsoft.NetCore.App shared
framework része, igy altaldban nem kell kiilon beszereznunk 6ket.

Adjunk a solution-héz egy konzolos projektet (Console App (.NET 6), nem .NET Framework!)
WebApiLab.Client néven. A Program.cs-ben irjuk meg az egy terméket lekérdezd fliggvényt
(GetProductAsync) és hivjuk meg.

Console.Write("ProductId: ");
var id = Console.ReadLine();
if(id != null)
await GetProductAsync(int.Parse(id));

Console.ReadKey();
static async Task GetProductAsync(int id)

{

using var client = new HttpClient();

105

https://github.com/bmeaut/WebApiLab
https://github.com/bmeaut/WebApiLab/archive/refs/heads/net6-client-init.zip
https://github.com/RicoSuter/NSwag/wiki/NSwagStudio
https://github.com/RicoSuter/NSwag/releases/latest
https://www.getpostman.com/

/*Ha eltér, a portot irjuk at a szervernek megfelelden*/
var response = await client.GetAsync(
new Uri($"http://1localhost:5184/api/Products/{id}"));
response.EnsureSuccessStatusCode();
var jsonStream = await response.Content.ReadAsStreamAsync();
var json = await JsonDocument.ParseAsync(jsonStream);
Console.WriteLine($"{json.RootElement.GetProperty("name")}:" +
$"{json.RootElement.GetProperty("unitPrice")}.-");

}
Az elterjedtebb .NET alapu kliensek, a WinForms, WPF alkalmazasok a legutobbi
(r) idékig .NET Framework alapuak voltak, viszont mar egy ideje a .NET 6 is tAimogatja
- a WinForms, WPF, WinUI, MAUI (régi Xamarin) alkalmazasokat. Célszerli ezeket

valasztani a régi .NET Framework alapu valtozatok helyett.

Allitsuk be, hogy a szerver és a kliensoldal is elinduljon (solutionén jobbklikk > Set startup
projects...), majd probdljuk ki, hogy a megadott azonositdju termék neve és ara megjelenik-e a
konzolon.

Jelenleg csak alapszintl (nem tipusos) JSON sorositast alkalmazunk. A kovetkezd 1épés az lenne,
hogy a JSON alapjan visszasorositandnk egy konkrétabb objektumba. Ehhez kliensoldalon is kellene
lennie egy Product DTO-nak megfeleld osztalynak. Hogyan johetnek létre a Kkliensoldali
modellosztalyok?

 kézzel 1étrehozzuk 6ket a JSON alapjan - maceras, bar vannak ra eszkozok, amik segitenek

* a DTO-kat osztalykonyvtarba szervezzik, mindkét oldal hivatkozza - csak akkor miikodik, ha
mindkét oldal .NET-es, rdaddsul konnyen kaphat az osztalykonyvtar olyan figgdséget, ami
igazabol az egyik oldalnak kell csak, igy meg mindkét oldal meg fogja kapni

+ generaltatjuk valamilyen eszkdzzel a szerveroldal alapjan - ezt probdaljuk most ki

Allitsuk be, hogy csak a szerveroldal (Api projekt) induljon.

OpenAPI/Swagger szerveroldal

Az OpenAPI (eredeti nevén: Swagger) eszkozkészlet segitségével egy JSON alapu leirasat tudjuk
el6allitani a szerveroldali API-nknak. A leirds alapjan generdlhatunk dokumentaciot, sot
kliensoldali kodot is a kliensoldali fejleszt6k szamara. Jelenleg a legfrissebb specifikacio az OpenAPI
v3-as (OAS v3). Az egyes verzidk dokumentacioja elérhetd itt.

Az OpenAPI nem .NET specifikus, kiillonféle nyelven irt szervert és klienst is tdmogat. Ugyanakkor
késziltek Kkifejezetten a .NET-hez is OpenAPI eszkozok, ezek kozul hasznalunk parat most. .NET
kornyezetben a legelterjedtebb eszkozkészletek:

* NSwag - leir6-, szerver-, és kliensoldali generdlas is. Részleges OAS v3 tdmogatas.

» Swashbuckle - csak leird generalas. OAS v3 tamogatott.

* AutoRest - npm csomag .NET Core fuggoséggel, csak kliensoldali kodgeneralashoz. Részleges OAS
v3 tdmogatas.

106

https://www.meziantou.net/visual-studio-tips-and-tricks-paste-as-json.htm
https://github.com/OAI/OpenAPI-Specification/tree/master/versions
https://github.com/RicoSuter/NSwag
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/Azure/autorest

» Swagger codegen - java alapu kliensoldali generator. C# tdmogatas csak OpenAPI v2-hoz

 Kiota - uj, Microsoft fejlesztésti C# alapu kliensoldali generator. OAS v3 tamogatott.
Elsd 1épésként a szerveroldali kodunk alapjan Swagger leirast generadlunk NSwag segitségével.

Adjuk hozza a projekthez az NSwag.AspNetCore csomagot a Package Manager Console-bdl vagy az
API projekt Manage NuGet packages Ul-on, és toroljik ki a Swashbuckle.AspNetCore csomagot.

Konfigurdljuk a sziikséges szolgaltatasokat a DI rendszerbe.

//builder.Services.AddEndpointsApiExplorer();
//builder.Services.AddSwaggerGen();
builder.Services.AddOpenApiDocument();

Az OpenAPI leiro, illetve a dokumentacios felillet kiszolgaldsara regisztraljunk egy-egy NSwag
middleware-t az Endpoint MW elé. Az eddigi Swagger tdmogatassal kapcsolatos kddok torolhetdk.

/**/if (app.Environment.IsDevelopment())

/**/{
//app.UseSwagger();
//app.UseSwaggerUI();
app.UseOpenApi();
app.UseSwaggerUi3();

/**/}

A Swagger UI a /swagger utvonalon lesz elérhetd. Probaljuk ki, hogy miikodik-e a dokumentacios
feliillet a /swagger utvonalon, illetve a leird elérhet6-e a /swagger/vl/swagger.json utvonalon.

O A Swagger leir0 linkje megtalalhaté a dokumentacids feltilet cimsora alatt.
w

A dokumentdcids feliileten fedezziik fel a ProductsController miveleteit (Products felirat
kinyitasaval), a visszatérési értékek leirasat (példa, illetve modell-leiro), illetve a modell-leirokat a
miveletlista alatt. Hivjuk is meg a /api/Products/{id} valtozatot, kitoltve a sziikséges paramétert.

O A kiprébalashoz ne felejtsiik el megnyomni a jobb oldalon a Try it out gombot.
w

107

https://github.com/swagger-api/swagger-codegen
https://github.com/swagger-api/swagger-codegen-generators/issues/172
https://learn.microsoft.com/en-us/openapi/kiota

@ - oo definition

My Title

[Base ORAL: lecalhoac:5300]

schemas
HTTP e
Products W

/api/Tramacts

| POST fapifProducks

JapifProdactsys{id}

Parameters [Ty it out

Hamae D scoplion

id & fegused
integer{5int32})

fEath)

Responses Respanse conlenl Lype text'plain b4]

Code Description

200
Example Value WKodal

"SEring”

"order=s": |
|

d": o,
rderbata®; *2 05-04TO0: 59;: 020E"

| FLUT JapifProduacts /S (id)

[m Sapi/Productss [(id)

Models >

SwaggerUI feliilet

108

Testreszabas - XML kommentek

Az NSwag képes a kédunk XML kommentjeit hasznositani a dokumentacios feliileten. Irjuk meg egy
mivelet XML kommentjét.

/// <summary>

/// Get a specific product with the given identifier

/// </summary>

/// <param name="id">Product's identifier</param>

/// <returns>Returns a specific product with the given identifier</returns>
/// <response code="200">Listing successful</response>

/**/[HttpGet ("{id}")]

/**/public async Task<ActionResult<Product>> Get(int id){/*...*/}

A Swagger komponensink az XML kommenteket nem a forraskddbdl, hanem egy generalt
allomanybol képes kiolvasni. Allitsuk be ennek a generédlasat a projekt build beallitdasai kozott (

Build » XML documentation file). Az alatta 1év0 textbox-ot liresen hagyhatjuk.

Documentation file (@
Generate a file containing APl documentation.

XML documentation file path @

Optional path for the APl documentation file, Leave blank to use the default location.

| | Browse...

Projektbeallitdsok (Build lap) - XML dokumentdcids fdjl generdldsa

Testreszabas - Felsorolt tipusok sorositasa szovegként

Kovetkezd Kkis testreszabasi lehet6ség, amit kiprobalunk, a felsorolt tipusok szovegként valo
generdlasa (az egész szamos kodolas helyett). Ez 4ltaldban a bevalt mddszer, mivel a kliensek
szamara kifejezobb. A DI-ban a JSON sorositast konfiguraljuk:

/**/builder.Services.AddControllers() //; tordlve
.AddJsonOptions(o =>
{

//0.]sonSerializerOptions.ReferenceHandler = ReferenceHandler.Preserve;
0.JsonSerializerOptions.Converters.Add(new JsonStringEnumConverter());

1

Probaljuk ki, hogy az XML kommentiink megjelenik-e a megfelel6 miiveletnél, illetve a valaszban a
Product.ShipmentRegion szOveges értékeket vesz-e fel.

Testreszabas - HTTP statuszkodok dokumentalasa

Gyakori testreszabdsi feladat, hogy az egyes miiveletek esetén a valasz pontos HTTP statuszkodjat is

109

https://docs.microsoft.com/en-us/dotnet/csharp/codedoc
https://softwareengineering.stackexchange.com/questions/220091/how-to-represent-enum-types-in-a-public-api

dokumentdlni szeretnénk, illetve ha tobb kiilonb6z6 kddu valasz is lehetséges, akkor mindegyiket.

Ehhez elég egy (vagy tobb) ProducesResponseType attributumot felrakni a miiveletre.

/// <summary>
/// Creates a new product
/// </summary>
/// <param name="product">The product to create</param>
/// <returns>Returns the product inserted</returns>
/// <response code="201">Insert successful</response>
/**/[HttpPost]
[ProducesResponseType(StatusCodes.Status201Created)]
/**/public async Task<ActionResult<Product>> Post([FromBody] Product product)
{/*...*%/}

/**/[HttpPut("{id}")]
[ProducesResponseType(StatusCodes.Status204NoContent)]

/**/public async Task<ActionResult> Put(int id, [FromBody] Product value)
{/*...*/}

/**/[HttpDelete("{id}")]
[ProducesResponseType(StatusCodes.Status204NoContent)]

/**/public async Task<ActionResult> Delete(int id)
{/*...%/}

Ellenérizzik, hogy a dokumentacids feliilleten a fentieknek megfelel6 statuszkodok jelennek-e meg.

OpenAPI/Swagger kliensoldal

A kliensoldalt az NSwag Studio eszkozzel generaltatjuk. Ez a generator egy egyszerlien hasznalhato,
de mégis sok bedllitast timogato eszkdz, azonban van par hidnyossaga:
» egyetlen fajlt general

* nem tamogatja az Uj JSON sorositdt, csak a régebbit
El6készitésként adjuk a Client projekthez az alabbiakat:

* Newtonsoft.Json NuGet csomagot

» egy osztalyt ApiClients néven

Inditsuk el a projektiinket (a szerveroldalra lesz most sziikség) és az NSwag Studio-t, és adjuk meg
az alabbi beallitasokat:

* Input rész (bal oldal): valasszuk az OpenAPI/Swagger Specification filet és adjuk meg a OpenAPI
leironk cimét (pl.: http://localhost:5000/swagger/vl/swagger.json). Nyomjuk meg a Create local
Copy gombot.

* Input rész (bal oldal) - Runtime: Net60

* Output rész (jobb oldal) - jeldljiik be a CSharp Client jel616t

110

https://github.com/RicoSuter/NSwag/issues/1398
https://github.com/RicoSuter/NSwag/issues/2243
http://localhost:5000/swagger/v1/swagger.json

* Output rész (jobb oldal) - CSharp Client fil - Settings alful: folil a Namespace mez6ben adjunk
meg egy névteret, pl. WebApiLab.Client.Api, lentebb a Use the base URL for the request ne legyen
bepipalva

E NSwagStudio: The Swagger AP toolchain for NET and TypeScript (x64), v13.18.5.0 — [m] X
File
2
S | Untitled
E
g Input: OpenAPIl/Swagger Specification Outputs
- Runtime [] TypeScript Client CSharp Client [[] CSharp Controller
= y
3 Nets0 v OpenAP|/Swagger Specification | CSharp Client
<<
Specifies the used command line binary; should match the selected " . .
assembly type. o CSharp Client Settings
£
Default Variables (‘foo=bar.baz=bar"), usage: S{foo) -1 Namespace
= WebApilab.Client.Api
=
a -
Web AP via reflection (deprecated) | JSON Schema | \NET Assembly < | Additional Namespace Usages (comma separated)
OpenAPl/Swagger Specification ASP.NET Core via AP| Explorer ©
Specification URL: [[] Generate contracts output
http:/flocalhost:53184/swagger/vl/swaggerjson || Create local Copy Generate exception classes (when disabled, exception classes must be imported)
Specification JSON/YAML (if specified, the URL is ignored): Exception class name (may contain the ‘{controller}’ placeholder)
ApiException
14 p E
2. "x-generator": "NSwag v13.15.10.@ (NJsonSch Client
3: "openapi": "3.8.8", X
4 v isfu ..'_j Generate Client Classes
: ::fiﬂ?“: I"t,‘:l-r;téf"’ Operation Generation Mode
- VErsio U The {contraller} placeholder of the Class Mame is replaced by generated client name
E’ " (depends on the OperationGenerationMode strategy).
B servers™: [
a MultipleClientsFromOperationld ¥
1@ “url": "http://localhost:5184"
11 H Class Name
12 1, -
13 "paths”: { {controller}Client
4 G INEES | Client class access modifier
15 Tget™: { -
16 "tags": [public
17 "Products”
18] Methods with a protected access modifier to use in partial methods (‘classname.me
3
19 "operationId"”: "Products_GetAll",
2@ "responses”: {
21 "280": { [] Use the base URL for the request
22 “description™: *", .
23 "content™: { [] Generate optional parameters (rearder parameters (required first, optional at the enc
- a[l:?pl icat im' i=onaRt Excluded Parameter Names (comma separated).
25 schema”: {
26 "type": "array",
27 "items™: {
78 "Eref": "#/ tef=ch .
: FomnaneRTEIse Generate Outputs Generate Files

NSwag Studio bedllitdsok
Jobb oldalt alul a Generate Outputs gombbal generaltathatjuk a kliensoldali kodot.

A generalt koddal irjuk felul az ApiClients.cs tartalmat (ehhez le kell &llitani a futtatast). Ezutan a
projektnek fordulnia kell. irjuk meg a Program.cs-ben a GetProduct uj valtozatat:

static async Task<Product> GetProduct2Async(int id)
{

/*Ha eltér, a portot irjuk at a szervernek megfelelden*/
using var httpClient = new HttpClient()

{ BaseAddress = new Uri("http://localhost:5184/") };
var client = new ProductsClient(httpClient);
return await client.GetAsync(id);

Hasznaljuk az uj valtozatot.

111

/**/1f (id != null)

{
//await GetProductAsync(int.Parse(id));
var p = await GetProduct2Async(int.Parse(id));
Console.WriteLine($"{p.Name}: {p.UnitPrice}.-");
}

Allitsuk be, hogy a szerver és a kliensoldal is elinduljon, majd prébaljuk ki, hogy megjelenik-e a kért
termék neve és ara.

(r) Ez csak egy minimalpélda volt, az NSwag nagyon sok beallitassal rendelkezik.

A Kliensre innent6l nem lesz sziikség, beallithatjuk, hogy csak a szerver induljon.

A generdlt kliens helyes miikodéséhez a miveletek minden nem hibat jelzd

A statuszkoddjait (2xx) dokumentalnunk kellene Swagger-ben a ProducesResponseType
attributummal, kilonben helyes szerver oldali lefutds utan is kliensoldalon nem
vdrt statuszkod hibat kaphatunk.

Hibakezelés I1.

409 Conflict - konkurenciakezelés

Konfigurdljuk fel a Product entitast ugy, hogy az esetleges konkurenciahelyzeteket is felismerje a
frissités soran. Jeldljunk ki egy Kkitiintetett mez6t (RowVersion), amit minden update muveletkor
frissitiink, igy ez az egész rekordra vonatkozé konkurenciatokenként is felfoghato.

Ehhez vegyunk fel egy byte[]-t a Product entitas osztalyba RowVersion néven.

/**/public class Product

/**/{
/**/ //...

public byte[] RowVersion { get; set; } = null!;
/**/}

Allitsuk be az EF kontextben (OnModelCreating), hogy minden médositasnal frissitse ezt a mezét és
ez legyen a konkurenciatoken, az IsRowVersion fliggvény ezt egyben el is intézi:

modelBuilder.Entity<Product>()
.Property(p => p.RowVersion)
.IsRowVersion();

A hattérben az EF a mddositas soran egy plusz feltételt csempész az UPDATE SQL
O utasitdsba, mégpedig, hogy az adatbdzisban 1évd RowVersion mez6 adatbdzisbeli
w

értéke az ugyanaz-e mint, amit 8 ismert (a kliens altal latott) értéke. Ha ez a feltétel

112

https://github.com/RicoSuter/NSwag/wiki

sérul, akkor konkurenciahelyzet all fent, mivel valaki mar megvaltoztatta az
adatbazisban 1év6 értéket.

Migrdlnunk kell, mert megjelent egy Uj mez6 a Products tdblankban. Ne felejtsiik el a szokdasos
modon bedllitani a Default Project-et a DAL-ra a Package Manager Console-ban!

Add-Migration ProductRowVersion
Update-Database

Még a Product DTO osztdlyba is fel kell vegytiik a RowVersion tulajdonsagot és legyen ez is kotelezd.

/**/public record Product

/**/{
/**/ //...
[Required(ErrorMessage = "RowVersion is required")]
public byte[] RowVersion { get; init; } = null!;
/**/}

Konkurenciahelyzet esetén a 409-es hibakoddal szokas visszatérni, illetve PUT miivelet sordn a
valasz azt is tartalmazhatja, hogy melyek voltak az itk6z6 mezdk. Az uitkozés feloldasa tipikusan
nem feladatunk ilyenkor.

Készitsiink egy sajat ProblemDetails leszarmazottat. Hozzunk létre egy Uj mappat ProblemDetails
néven az Api projektben és bele egy uj osztdlyt ConcurrencyProblemDetails néven, az aldbbi
implementacidval:

public record Conflict(object? CurrentValue, object? SentValue);

public class ConcurrencyProblemDetails : StatusCodeProblemDetails

{
public Dictionary<string, Conflict> Conflicts { get; }

public ConcurrencyProblemDetails(DbUpdateConcurrencyException ex) :
base(StatusCodes.Status409Conflict)
{

Conflicts = new Dictionary<string, Conflict>();
var entry = ex.Entries[@0];
var props = entry.Properties
Where(p => !p.Metadata.IsConcurrencyToken).ToArray();
var currentValues = props.ToDictionary(
p => p.Metadata.Name, p => p.CurrentValue);

entry.Reload();
foreach (var property in props)

{
if (!Equals(currentValues[property.Metadata.Name], property.CurrentValue))

{

113

Conflicts[property.Metadata.Name] = new Conflict
(

property.CurrentValue,
currentValues[property.Metadata.Name]

)

A fenti megvalositas 0Osszeszedi az egyes property-khez (a Dictionary kulcsa) a jelenlegi
(CurrentValue) és a kliens altal kuldott (SentValue) értéket. Adjunk egy ujabb leképezést a hibakezeld
MW-hez a legfelsd szintl kodban:

/**/builder.Services.AddProblemDetails(options =>

/**/{
/**/ //..
options.Map<DbUpdateConcurrencyException>(
ex => new ConcurrencyProblemDetails(ex));
/**/});

Ezzel kész is az implementacionk, amit Postman-b6l fogjuk kiprébdlni. A kész kdd elérhetd a net6-
client-megoldas agon.

A Lkotelezéen Kkitoltendd konkurencia mez6 beszurasndal kellemetlen, hiszen
O kliensoldalon még nem tudhat6 a token kezdeti értéke. Ilyenkor hasznalhatunk
barmilyen értéket, az adatbdazis fogja a kezdeti token értéket beallitani.

Postman hasznalata

Postman segitségével osszedllitunk egy olyan hivasi sorozatot, ami két felhaszndl6 atlapolodo
modosito miveletét szimuldlja. A két felhaszndlé ugyanazt a terméket (tej) fogja modositani, ezzel
konkurenciahelyzetet elgidézve.

Kollekcio generalas OpenAPI leiro alapjan

A Postman képes az OpenAPI leiré alapjan példahivdsokat generdlni. Ehhez inditsuk el a
szerveralkalmazdsunkat és a Postman-t is. A Postman-ben f6lil az Import gombot valasztva adjuk
meg az OpenAPI leiro swagger.json URL-jét (amit az elinditott BE /swagger oldaldn a cimsor alatt
taldlunk). A felugré ablakban csak a Generate collection from imported APIs opcidt valasszuk.
Ezutdn megjelenik egy Uj Postman API és egy uj kollekcid is My Title néven - ezeket nevezzik at

WebApiLab-ra (jobbklikk a néven » Rename).
O Tovabbi segitség a dokumentacioban.

A kollekcidoban mind az 6t mtiveletre talalhaté példahivas.

114

https://github.com/bmeaut/WebApiLab/tree/net6-client-megoldas
https://github.com/bmeaut/WebApiLab/tree/net6-client-megoldas
https://learning.postman.com/docs/designing-and-developing-your-api/importing-an-api/#importing-api-definitions

Valtozok

A valtozokat a kéréseken belili és a kérések kozotti adatatadasra hasznalhatjuk. Tobb hatokor
(scope) kozul valaszthatunk, amikor definidlunk egy valtozot: globalis, kollekcion belili,
kornyezeten belili, kérésen beliili lokalis. S6t, egy adott nevil valtozot is definidlhatunk tébb
szinten is - ilyenkor a specifikusabb feliilirja az dltaldnosabbat. Ebben a példdban mi most csak a
kollekcid szintet fogjuk haszndlni.

A kollekciot kivalasztva egy uj ful jelenik meg, itt a Variables fulon allithatjuk a valtozokat, illetve
megnézhetjik az aktualis értékiiket.

O Tovabbi segitség a kollekcio valtozok felvételéhez a dokumentacioban.
-

Vegyiik fel az alabbi valtozokat:

e ul_allprods - az els6 felhaszndl6 altal lekérdezett dsszes termék adata
* ul_tejid-az el6zd listabdl az els6 felhaszndlo altal kivalasztott termék (tej) azonositoja
* ul_tej - az el6bbi azonosito alapjan lekérdezett termék adata

» ul_tej_deluxe - az el6bbi termék modositott termékadata, amit a felhasznalé menteni kivan

Ne felejtstik el elmenteni a kollekcio valtoztatdsait a Save (CTRL + S) gombbal.

g A Postman nem ment automatikusan, ezért lehet6leg mindig mentsiunk (CTRL + S),
amikor egy masik hivas, kollekcio szerkesztésére térink at.

Mappak

A kéréseinket killon mappdkba szervezve elkilonithetjik a Kkollekcion belil az egyes
(rész)folyamatokat. Mappdakat a kollekcié extra mentijén (a kollekcid neve mellett a ... ikont
megnyomva) beliil az Add Folder mentiipont segitségével vehetink fel.

Vegyunk fel a kollekcionkba egy uj mappat Update Tej néven.

O Tovabbi segitség uj mappa felvételéhez a dokumentacioban.
w

Egy felhasznalo folyamata

Egy tipikus modositd folyamat felhasznaloi szempontbdl az aldbbi 1épésekbdél all - az egyes
lépésekhez szerveroldali API miiveletek kapcsolodnak, ezeket a listaelemekhez hozza is
rendelhetjuk:

* 0sszes termék megjelenitése - API: 6sszes termék lekérdezése

* moédositani kivant termék kivalasztasa - API: nincs teendod, tisztan kliensoldali miivelet

* a modositani kivant termék részletes adatainak megjelenitése - API: egy termék adatainak
lekérdezése

e a kivant mdédositas(ok) bevitele - API: nincs, tisztan kliensoldali miivelet

115

https://learning.postman.com/docs/sending-requests/variables/#defining-collection-variables
https://github.com/postmanlabs/postman-app-support/issues/3466
https://learning.postman.com/docs/collections/using-collections/#adding-folders-to-a-collection

* mentés - API: adott termék modositasa
* (vissza) navigdcio + aktualis (frissitett) allapot megjelenitése - API: dsszes termék lekérdezése
A négy API hivast klonozzuk (CTRL + D) a generalt példahivasokbdl. Egy adott hivasra csinaljunk egy

klont (jobbklikk — Duplicate), drag-and-drop-pal huzzuk rd az 4j mappankra, végil nevezzik at
(CTRL + E). Ezekre a hivasokra csindljuk meg:

» Osszes termék lekérdezése (mddositas eldtt), azaz Products Get All példahivas, nevezzik at
erre: [U1]GetAllProductsBefore

* egy termék adatainak lekérdezése, azaz az {id} mappan beliili Get a specific product with the
given identifier példahivas, nevezziik at erre [U1]GetTejDetails

* adott termék modositasa, azaz az {id} mappan belili Products Put példahivas, nevezzik at
erre [U1]UpdateTej

» Osszes termék lekérdezése (modositas utan), azaz Products Get All példahivas, nevezzuik at
erre: [U1]GetAllProductsAfter

'D + ? f-1.1.1
Collections
v WebApilLab
oo v 3 api/Products
APls
v
(=] > GET Get a specific product with...

2l U > PUT Products Put

DEL
=) > Products Delete
Mock Servers > GET Products Get All
> Creates a new product
P
Monitors v [UpdateTej

> GET [U1]GetAllProductsBefore
D]

Histary » cET [U1]GetTejDetails

> PUT [UT]UpdateTej
> cET [UT]GetAllProductsAfter

Postman hivdsok - egy felhaszndlé folyamata

g Vegyiik észre, hogy az elnevezések az OpenAPI leiré alapjan generalddnak, tehat
ha mdashogy dokumentaltuk az API-nkat, akkor mads lesz a példahivasok neve is.

116

Osszes termék lekérdezése, sajat vizualizacio és adattarolas valtozoba

Az [U1]GetAllProductsBefore hivas mar most is kiprobalhaté kilon a Send gombbal és az alsé
Body részen lathato az eredmény formazott (Pretty) és nyers (Raw) nézetben.

Sajat vizualizaciot is irhatunk, ehhez a kérés Tests fiilét haszndlhatjuk. Az ide irt JavaScript nyelvi
kod a kérés utan fog lefutni. Altaldban a véalaszra vonatkozo teszteket szoktuk ide irni.

frjuk be a kérés Tests fiilén 1év6 szdvegdobozba az aldbbi kodot, ami egy tdblazatos formaba
formazza a valasz JSON fontosabb adatait:

\

const template =
<table bgcolor="#FFFFFF">
<tr>
<th>Name</th>
<th>Unit price</th>
<th>[Hidden]Concurrency token</th>
</tr>

{{#each response}}
<tr>
<td>{{name}}</td>
<td>{{unitPrice}}</td>
<td>{{rowVersion}}</td>
</tr>
{{/each}}
</table>

\ Ll
’

const resplson = pm.response.json();
pm.visualizer.set(template, {
response: resplson

H;

r 1y L . N .
O Tovabbi segitség a vizualizaciokhoz a dokumentacioban.
-

A visszakapott adatokra a kés6bbi 1épéseknek is sziikséguk lesz, ezért mentsik el az u1_allprods
valtozoba.

/**/pm.visualizer.set(template, {
/**/ response: respJlson
/**/});

pm.collectionVariables.set("u1_allprods", JSON.stringify(respJson));

g Valtozoba mindig sorositott (pl. egyszerl szoveg tipusu) adatot mentsink, ne
kozvetlentl a JavaScript valtozokat.

Probaljuk ki igy a kérést, alul a Body fil Visualize alfiilén tdblazatos megjelenitésnek kell

117

https://learning.postman.com/docs/getting-started/sending-the-first-request/#sending-a-request
https://learning.postman.com/docs/getting-started/sending-the-first-request/#sending-a-request
https://learning.postman.com/docs/sending-requests/visualizer/

megjelennie, illetve a kollekcié valtozokezel6 feliiletén az ul1_allprods értékbe be kellett ir6dnia a
teljes valasz torzsnek.

O Tovabbi segitség szkriptek irdsdhoz a dokumentacioban.

-

7 Nem kotelezd el6zetesen felvenni a valtozokat, a set hivas hatdsara létrejon, ha
- még nem létezik.

Egy termék részletes adatainak lekérdezése, valtozok felhasznalasa

A forgatokonyviink szerint a felhaszndld a termékek listajabol kivalaszt egy terméket (a Tej neviit).
Ezt a 1épést szkriptb6l szimuldljuk, mint az [U1]GetTejDetails hivas el6tt lefutd szkript. A hivas
el6tt futo szkripteket a hivas Pre-request Script fiilén 1év6 szévegdobozba irhatjuk:

const allProds = JSON.parse(pm.collectionVariables.get("u1_allprods"));
const tejid = allProds.find(({ name }) => name.startsWith('Tej')).1id;
pm.collectionVariables.set("u1_tejid", tejid);

Tehat kiolvassuk az elmentett termeéklistat, kikeressik a Tej nevl elemet, vesszik annak
azonositdjat, amit elmentiink az u1_tejid valtozéba. Ezt a valtozét mdr fel is haszndljuk a kérés

paramétereként: a Params filon az id nevli URL paraméter (Path Variable) értéke legyen
{{u1_tejid}}

A Kkérés lefutdsa utdn mentsik el a vdlasz torzsét az ul_tej vdltozoba. A Tests fulon 1év6
szovegdobozba:

pm.collectionVariables.set("u1_tej", pm.response.text());

Ezt a fazist ki is lehetne hagyni, mert a listdban mar minden sziikséges adat benne
(2 , ,y s , , , . , ,
O volt a modositashoz, de dltalanossagban gyakori, hogy egy részletes nézeten lehet
a modositast elvégezni, ami a részletes adatok lekérdezésével jar.

Modositott termék mentése

Miel6tt a modositott terméket elkildenénk a szervernek, szimuldljuk magat a felhasznaloi
madositast. Az [U1]UpdateTej hivds Pre-request Script-je legyen ez:

const tej = JSON.parse(pm.collectionVariables.get("ul_tej"));
tej.unitPrice++;
pm.collectionVariables.set("ul1_tej_deluxe", JSON.stringify(tej));

Lathato, hogy a modositott termékadatot egy uj valtozoba (u1_tej_deluxe) mentjik. Ennél a hivasnal
is a Params fiilon az id nevili URL paraméter (Path Variable) értéke legyen {{u1_tejid}}. Viszont itt
mar a kérés torzseét is ki kell tolteni a modositott termékadattal. Mivel ez meg is van valtozoban, igy
elég a Body fil szovegdobozaba (Raw nézetben) csak ennyit beirni: {{u1_tej_deluxe}}.

118

https://learning.postman.com/docs/writing-scripts/intro-to-scripts/

Frissitett terméklista lekérdezése, folyamat futtatasa

Az utolsé folyamatlépésnél mar nincs sok teend6, ha akarunk vizualizaciot, akkor a Tests fiil
szovegdobozaba masoljuk at a fentebbi vizualizacios szkriptet.

Egy kéréssorozat futtatdsahoz hasznalhato a Collection Runner funkcid, ami a kollekcié vagy egy
almappdjanak oldalarol (ami a kollekcié/almappa kivalasztdsakor jelenik meg) a jobb szélen a Save
melletti Run gombra nyomva hozhato el6. A megjelen6 ablak bal oldalan megjelennek a valasztott
kollekcié/mappa alatti hivdsok, amiket szilirhetink (a hivasok el6tti jelol6dobozzal), illetve
sorrendezhetlink (a sor legelején 1év6 fogantyuval).

O Tovabbi segitség kollekciok futtatdsahoz a dokumentacioban.

w
Az eddig elkésziilt folyamatunk futtatdsdhoz valasszuk ki az Update Tej mappét. Erdemes
beallitani a jobb részen a Save responses jelol6t, igy a lefutds utan megvizsgalhatjuk az egyes
kérésekre jott valaszokat.

m Runner > T e Mo Environment w (&
RUN ORDER Deselect All | Select Al Reset
GeT [UT]GetAllProductsBefore Iterations 1
GET [U1]GetTejDetails
Delay 0 ms
PUT [U1]UpdateTe]
GeT [U1]GetAllProductsAfter Bata Sl

Save responses (@
Keep variable values @
I:I Run collection without using stored cookies

Save cookies after collection run &

Postman Runner konfigurdldsa egy felhaszndlo folyamatanak futtatdsdhoz

Probaljuk lefuttatni a folyamatot, a lefutds utdn a valaszokban ellenfrizziik a termékadatokat
(kattintsuk meg a hivast, majd a felugr6 ablakocskdban vdlasszuk a Response Body részt),
kiilonodsen az utolso hivas utdnit - a tej &ranak meg kellett valtoznia az els6 hivashoz képest.

119

https://learning.postman.com/docs/collections/running-collections/intro-to-collection-runs/
https://learning.postman.com/docs/running-collections/intro-to-collection-runs/#running-your-collections
https://learning.postman.com/docs/running-collections/intro-to-collection-runs/#running-your-collections
https://learning.postman.com/docs/running-collections/intro-to-collection-runs/#running-your-collections

[*] webapiLab ¥ ' oo Mo Environment v @

WebApilLab E New Export Results

All Tests Passed (0) Failed (0)

Iteration 1

GET [U1]GetAllProductsBefore E 200 C
This request does not have any tests.

GET [U1]GetTejDetails C 200 C 55ms 293 B
This request does not have any tests.

uT [U1UpdateTe] 204 No Contant

-

This request does not have any tests.

GET [U1]GetAllProductsAfter 200 C

This request does not have any tests.

Postman Runner - egy felhaszndlo folyamatdnak lefutdsa

A masodik felhasznal6 folyamata

Az alabbi 1épésekkel allitsuk eld a masodik felhasznald folyamatat:

» vegyunk fel minden u1 valtozé alapjan uj valtozot u2 névkezdettel

¢ duplikdljunk minden [U1] hivast, a klénok neve legyen ugyanaz, mint az eredetié, de kezd6djon
[U2]-vel

* a klonok minden szkriptjében, illetve paraméterében irjunk at minden ul-es valtozénevet u2

-esre
o az [U2]GetAllProductsBefore hivasban a Tests fiilon egy helyen

o az [U2]GetTejDetails hivdsban a Pre-request Script filon két helyen, a Tests filon egy
helyen, illetve a Params fiillon egy helyen

- az [U2]UpdateTej hivasban a Pre-request Script fiilon két helyen, a Body filon egy helyen,
illetve a Params filon egy helyen

* az [U2]UpdateTej hivas Pre-request Script modosito utasitasat irjuk at a lenti kodra. A termék
nevét modositjuk, nem az 4rat, a konkurenciahelyzetet ugyanis akkor is érzékelni kell, ha a két
felhasznald nem ugyanazt az adatmezdt modositja (ugyanazon terméken beliil).

tej.name = "Tej " + new Date().getTime();

120

v WebApiLab *
> [apifProducts
~ 9 UpdateTej
» cET [U1]GetAllProductsBefore
» cET [UZ]GetAllProductsBefore
» cET [U1]GetTejDetails
» GET [U2]GetTejDetails
» PUT [U1lUpdateTe]
» PUT [U2]UpdateTe]
» CET [U1]GetAllProductsAfter

» cET [U2]GetAllProductsAfter

Postman hivdsok - mindkét felhaszndlé folyamata

Ezzel elkészult a masodik felhaszndld folyamata. Attdl fiigg6en, hogy hogyan lapoltatjuk at a négy-
négy hivast, kapunk vagy nem kapunk 409-es valaszkodot futtatadskor. Az aldbbi sorrend nem ad
hibat, hiszen a masodik felhaszndlé azutdn kéri le a terméket, hogy az els6é felhaszndlé mar
modositott:

1. [U1]GetAllProductsBefore

[U2]1GetAllProductsBefore

[U1]GetTejDetails

[U1]UpdateTej

[U1]1GetAllProductsAfter

[U2]GetTejDetails

[U2]UpdateTej

® N e s w N

[U2]GetAllProductsAfter
Az utolso hivas utan a tej ara és neve is megvaltozott.

Az aldbbi sorrend viszont hibat ad, hiszen a masodik felhaszndlé mar elavult RowVersion-t fog
mentéskor elkildeni:

[U1]GetAllProductsBefore

[U2]GetAllProductsBefore

[U1]GetTejDetails

[U2]GetTejDetails

[U1]UpdateTej

[U1]GetAllProductsAfter

N o ok W

[U2]UpdateTej

121

8. [U2]GetAllProductsAfter

WebApiLab No E

All Tests
1

Passed (0) Failed (0}

GET [UZ]GetAllProductsBefore

 mLapunou wusna
This
Response Body -
GET [U1]G
Thi "conflicts":
his “Name": i
“currentValue": "Tej 1619359247818",
GET [U2IC “sentValue™: "Tej 1619359346195"
ir
“UnitPrice”: {
This “currentValue": 263,
"sentValue": 262
PUT [UTU 1 :
I
"type": "https://httpstatuses.com/ /409",
This IItltle .:. Conflict"®,
status": 489,
"detail”™: null,
GET [U1]G "instance”: null,
"traceld”: "00-664ddddddlcT7ec43ad15518ad3d23e51-
0bf3fcef1d4a9843-00"
This 1
PUT [UZ2]UpdateTej 2
This request does not have any tests.
GET [U2]GetAllProductsAfter 2
This reguest does not have any tests.

2 Bootcamp [0 Runner

Postman Runner lefutds konkurenciahelyzettel

Export Results

2000K 63ms 1013KE
2000K 55m 7B
2000 S51m 7B

N nite B1B
2000K 56ms 1013KB
Cor 75 552 B
2000K 42 1.013 KB

H ®

W Trash

Q

A

Q

Erdemes megvizsgalni a 409-es hibakddu vélasz torzsét és benne a valtozott mez8k
eredeti és megvaltozott értékét.

Ha igazi klienst irunk, figyeljiink arra, hogy a konkurenciatokent mindig kuldjuk le
a kliensnek, a kliens valtozatlanul kiildje vissza a szerverre, és a szerver pedig a
modositds sordn a klienst6l kapott tokent szerepeltesse a mddositando
entitasban. A legtébb hibds implementdcié arra vezethet6 vissza, hogy nem
kovetjuk ezeket az elveket. Szerencsére az adatelérési kodunkban ezeknek a
problémdaknak a nagy részét megoldja az EF.

Hivasokbdl allo folyamatokat nem csak Runnerben allithatunk 06ssze, hanem
szkripthdl is. Ha épp ellenkezéleg, kevesebb szkriptelést szeretnénk, akkor a
Postman Flows ajanlott.

Az elkészilt teljes Postman kollekcio importalhato errdl a linkrdl az OpenAPI importaldshoz

hasonl6 moddon. A kollekci6 szinten ne felejtsik el bedllitani
szerveralkalmazdsunk alap URL-jére.

122

a baseUrl valtozét a

https://learning.postman.com/docs/running-collections/building-workflows/
https://learning.postman.com/docs/postman-flows/gs/flows-overview
https://raw.githubusercontent.com/bmeaut/WebApiLab/net6-client-megoldas/Postman/WebAPILab.postman_collection.json

Felhasznalokezelés Azure B2C hasznalataval

Kiegészito anyagok, segédeszkozok, elofeltételek

» Azure el6fizetés sziikséges (ingyenes is megfeleld), a lehet6ségekrdl bévebben itt

Bevezetés

A felhasznalokezelés az utobbi években igen Osszetetté valt. Egy modern megoldasnak ma mar
része az aldbbiak kozul szamos képesség:
* email ellen6rzés regisztraciokor, email megero6sités bizonyos miiveleteknél
» tobbfaktoros beléptetés (pl. mobil eszkozzel)
* elfelejtett jelszo kezelése
o felhaszndlodk letiltasa
* botok kiszlirése (CAPTCHA)
* single sign-on
o egy szervezeten belul vagy
o kiils6 identitdsok tdmogatasa (Google, Facebook, Microsoft fiok)
* profil megtekintése, szerkesztése, torlése
o kuls6 identitdsok kapcsoldsa, levalasztasa
o GDPR funkciok: személyhez kapcsolodd adatok onkiszolgalo megtekintése, torlése
* adminisztracios felilet
o felhaszndlok megtekintése, letiltdsa, Uj jelszo generdlasi folyamat inditasa
Ez a bonyol6das maga utdn vonta a kapcsolodd technolégidk bonyolddasat is. Megjelentek

kilonbozo6 tipusu alkalmazaskornyezetekre (webes, mobil) kulénbozé szabvanyos authorizacios
folyamatok (OAuth flow-k) és ezekre épuld kiterjesztések, példaul az OpenlID.

.NET kornyezetben elérhet6ek ezen szabvanyok implementacioi, azonban a magasabb szintl
tdmogatas (pl. Visual Studio projektsablonok, generatorok, vardzslok) tobbnyire az egyszeriibb
esetekre, a webes alkalmazasokra, azon belil is a szerver oldali rendereléssel dolgozokra (ASP.NET
Core MVC) korlatozddott. Az MVC-s Identity template siiti alapu authentikdciot haszndl. Szélesebb
korben (pl. mobilkliensek) hasznalhatéak a token alapu (pl. JWT token), OAuth/OpenID megolddasok,
igy a tovabbiakban csak erre koncentralunk.

Token alapu felhasznalokezelés

Tipikus az ilyen rendszerekben, hogy egy Kkitliintetett entitds az un. identity
provider/authorization server tokeneket allit el6, amelyeket az alkalmazds, ahova a
kliensalkalmazas el6tt 1l6 felhasznald be akar 1épni (relying party, resource server) ellenériz. A
felhaszndlo a kliensprogramjan keresztiul az azonositds alatt kizdrdlag az identity provider-rel

123

https://www.aut.bme.hu/Course/felho#azuresub
https://medium.com/@darutk/diagrams-and-movies-of-all-the-oauth-2-0-flows-194f3c3ade85
https://openid.net/developers/specs/

kommunikél, neki adja meg a jelszavat példaul. Igy tehat alapvet6en harom szerepld van: a
kliensprogram (egy bongész6 is lehet), a relying party (RP/RS) és az identity provider (IDP/AS). Egy
IDP tobb RP-t is kiszolgalhat, igy sokszor az IDP telepitési szempontbol is egy kiilon komponens.

Ezen szabvanyokat implementdltdk a fejlettebb platformokra, igy ASPNET Core-ra is, tipikusan az
alabbi technoldgiakat/komponenseket alkalmazhatjuk:
* ASP.NET Core Identity (a Shared Framework része)
o adatelérési és uizleti logikai réteg a felhasznalodi adatok kezelésére
o JWT Bearer token middleware, ASP.NET Core authorizdcios rendszer - RP feladatokhoz
* Identity UI - az Identity Core-hoz tartozo feliilet (ASP.NET Core Razor alapu)

* Duende IdentityServer (kordbban IdentityServer) - 4-es fOverzidig nyilt forraskodu IDP,
széleskord tamogatas tokenkezelési, IDP feladatokhoz. 5-0s verzidotol kezdve licenszkoteles, bar
sok esetben igényelhet6 ingyenes licensz.

* Duende IdentityServer Admin UI - adminisztracids feltilet a Duende IdentityServer-hez

* Microsoft identity platform - komponensek Microsoft IDP szolgdltatasok (Azure AD, Azure AD
B2C - 1asd lentebb) igénybe vételéhez szerver- és kliensoldalhoz is. Nem 6nall6 IDP megoldas,
onmagaban nem hasznalhato. Az ujgeneracios komponenskonyvtarak MSAL néven érhet6ek el
kiilonbo6z6 platformokra: MSAL.NET .NET-hez, MSAL.js JavaScript-hez, sth.

Lathato, hogy maga a Microsoft alapvet6en csak a tokenek ellenOrzésére (RP feladat) biztosit
magasszintl API-t, illetve komponenst ASP.NET Core-ban, tokenek eldallitdsara nem (IDP feladat).
Ez utdébbira lehet j6 a Duende IdentityServer, de ezen felil egyéb alternativdk is elérhetdk.

Jelenleg (2022. tavasz) az ASP.NET Core projektsablonok a kovetkezd IDP technikakat hasznaljak:

* ASP.NET Core Web App: semmilyet, mert nem token, hanem stiti alapu!

* ASP.NET Core Web API: Microsoft identity platform vagy on-premise Active Directory (ez utobbi
lokalis halézaton miikodik)

* ASP.NET Core with Angular/React.js: Duende IdentityServer

Az IDP feladatok elég jol levalaszthatok, igy megjelentek azok a szolgaltatasok, melyek segitségével
gyakorlatilag minden IDP feladatot kiszervezhetiink, beleértve a fentebb felsorolt képességeket is.
Ezek az un. IDentity as a Service (IDaaS) vagy Authentication as a Service szolgaltatasok. Néhany
példa: Okta, AuthO (2021. tavaszan felvasarolta az Okta), Azure AD B2C. Ezek alapvet6en nem
ingyenes szolgdltatasok, bar tobbnyire bizonyos meéret/felhasznalészam/tokenmennyiség alatt
ingyenesen hasznalhatéak. Tovabbi lehetfség sajat tizemeltetésl, de kilon telepithetd, kész IDP
telepitése. Ez lehet akdr nem .NET-es is, hiszen a kommunikacié szabvanyokra (OAuth, OpenID
Connect) épil - ilyenre egy példa a keycloak. Ezen gyakorlat soran az Azure AD B2C szolgaltatast
fogjuk haszndlni, amivel az utolsé kivételével minden fenti komponenst kivaltunk.

A megvaldsitando rendszerben:

* az Azure B2C lesz az IDP/Authorization Server
* egy generdlt ASP.NET Core alkalmazas lesz a RP/Resource Server

o az alkalmazasbdl publikalt webes API-t csak autentikalt felhasznalok érhetik el

124

https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://www.nuget.org/packages/Microsoft.AspNetCore.Identity.UI
https://duendesoftware.com/
https://github.com/skoruba/Duende.IdentityServer.Admin
https://learn.microsoft.com/en-us/azure/active-directory/develop/
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/community
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity-api-authorization
https://www.okta.com/
https://auth0.com/
https://www.keycloak.org/

o Microsoft identity platform komponenseket (MSAL.NET) haszndlunk a B2C specifikus
feladatok megolddasahoz. Konkrétan a Microsoft.Identity.Web csomag biztositja az ASP.NET
Core altalanos felhasznaldkezelés alrendszerének és az MSAL.NET-nek az osszehangolasat.

* egy szintén generalt Blazor WebAssembly alkalmazast lesz a kliens, mely
- a felhaszndaldkezelési folyamatok végrehajtasdhoz a B2C altal kiszolgalt feliiletekre iranyit at
o az ASP.NET Core alkalmazdsunk API-jat hivja

o a Microsoft.Authentication.WebAssembly.Msal csomagot hasznadlunk a B2C specifikus
feladatok megoldasahoz. Ez a csomag egy .NET-es JavaScript interop réteget ad az MSAL.js
folé.

* az OAuth Authorization Code Flow folyamatot fogjuk kovetni. A PKCE-vel (Proof Key for Code
Exchange) kiegészitett valtozata az ajanlott flow szinte mindenfajta kliens (vastagkliens, web,

mobil) szamara. SPA-k (angular, react, Blazor WebAssembly, stb.) szdmara gyakorlatilag csak ez
szamit biztonsagosnak.

7 Az Azure B2C-ben az els6 50000 aktiv felhasznald kiszolgaldsa ingyenes minden
- hénapban.

Hosted WebAssembly alkalmazasbhol védett API hivasa

Kovessuk a hivatalos Microsoft utmutatot, itt csak az eltéréseket emeljuk ki. A kovetkez6 alcimek
megfelelnek az utmutato alcimeinek.

Elokészités: Azure B2C Tenant létrehozasa

7 Frdemes angolra allitani az Azure portdl nyelvét, értelmesebb hibatizeneteket
- kaphatunk.
A RP regisztralasa Azure B2C-be

Bar még nincs meg az RP alkalmazasunkbol semmi, a regisztraciojat elkészitjuk.

A kliensalkalmazas regisztralasa Azure B2C-be

Bar még nincs meg a kliensalkalmazasunkbdl sem semmi, a regisztraciojat elkészitjik. Ha
szeretnénk a B2C tesztfeliiletérol tesztelni a felhasznalokezeléses feliileteket, akkor a szakasz végén
az implicit grant flowt is engedélyezziik az alkalmazas Authentication mentpontjdban és ugyanitt
redirect URL-ként a https://jwt.ms cimet is vegytuk fel.

@ A jwt.ms oldalon dekoédolhatjuk a JWT tokenjeinket, de az authorization code flow-
- t redirect URI-ként nem tamogatja.

Az implicit grant flowt csak azért engedélyezzik, hogy a jwt.ms oldalon torténd
Q tesztelés majd miikodjon (lasd a kovetkezd szakasz), de ez mdr egy elavult
folyamat (ezért nincs is alapbdl engedélyezve) - csak tesztelési célbdl kapcsoljuk

125

https://github.com/AzureAD/microsoft-identity-web
https://github.com/AzureAD/microsoft-authentication-library-for-dotnet
https://github.com/AzureAD/microsoft-identity-web/wiki/Microsoft-Identity-Web-basics#high-level-architecture
https://www.nuget.org/packages/Microsoft.Authentication.WebAssembly.Msal
https://github.com/AzureAD/microsoft-authentication-library-for-js
https://learn.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-auth-code-flow#protocol-diagram
https://datatracker.ietf.org/doc/html/rfc7636
https://datatracker.ietf.org/doc/html/rfc7636
https://azure.microsoft.com/en-us/pricing/details/active-directory-b2c/
https://learn.microsoft.com/en-us/aspnet/core/blazor/security/webassembly/hosted-with-azure-active-directory-b2c?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/azure/azure-portal/set-preferences#change-language-and-regional-settings
https://learn.microsoft.com/en-us/azure/active-directory-b2c/tutorial-register-spa#enable-the-implicit-flow
https://jwt.ms
https://jwt.ms
https://learn.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-implicit-grant-flow#protocol-diagram

be.

User flow / policy 1étrehozasa, kiprébalasa
Egy kombindlt regisztracids-belépési folyamatot (Sign up and sign in) hozunk létre.
Ezeket az extra adatokat gytjtsuk be a felhasznaldkrol (Collect attribute):

¢ keresztnév (Given name)
e vezetéknév (Surname)

 felhaszndlénév (Display Name)
Ezeket az extra adatokat kddoltassuk bele a tokenbe (Return claim):

¢ keresztnév (Given name)

e vezetéknév (Surname)

felhasznalonév (Display Name)
* email cimek (Email addresses)
Ha kordbban engedélyeztik az implicit flow-t, probaljuk ki az 4j folyamatot a linkelt utmutato

alapjan (Test the user flow alcim). Valasszuk ki a kliensalkalmazast tesztelendd alkalmazéasként.
Regisztraljunk és 1épjuink be. Ellendrizzik a JWT dekoder oldalon a tokenbe keriild claim-eket.

Deritsiik fel a B2C Users oldalat. Ez egy adminisztrativ feliilet, a regisztralt felhasznalok adatait
latjuk, modosithatjuk, valamint a jelszavukat is visszaallithatjuk.

Kliens és szerver alkalmazas generalasa

Ebben a fazisban a beépitett .NET sablonok segitségével egy alapszinten miikodd, konfiguralt
felhasznalokezelést-hozzaférésszabdlyozast kapunk mind szerver-, mind kliensoldalon.

(r) A -f parancssori kapcsoloval bedllithatjuk a projektek altal hasznalt .NET verziot,
- példaul a 6-os verzidhoz haszndljuk a -f net6.0 kapcsolot.

Az Azure B2C kommunikacio szabvanyokra épul, igy szinte barmilyen (nem csak
.NET alapu) klienstechnoldgiat hasznalhatunk. Szdmos mintaprojekt elérhet6

O kilonb6z6 technologidkhoz. Az MSAL komponens is szamos fejleszt6i platformra
elérhet6. A legtobb mintaprojektet proba B2C tenanttal is ki lehet probalni,
ilyenkor nem is kell Azure el6fizetés.

Az alkalmazas kiprobalasa
A szakasz végén ki is probalhatjuk az aldbbiakat.

A /WeatherForecast cimre hivva bongész6b6l 401-es hibat kapunk, mig ha az Authorize,
RequiredScope attributumokat ideiglenesen levessziik a WeatherForecastController osztalyrol, akkor
visszakapjuk az adatokat.

126

https://learn.microsoft.com/en-us/azure/active-directory-b2c/tutorial-create-user-flows?pivots=b2c-user-flow
https://jwt.ms
https://learn.microsoft.com/en-us/azure/active-directory-b2c/code-samples
https://learn.microsoft.com/en-us/azure/active-directory/develop/msal-overview
https://github.com/Azure-Samples/active-directory-b2c-dotnet-desktop#using-the-demo-environment

A bal oldali Fetch Data és/vagy a jobb fels6 sarokban a Log in/Logout meniipontok segitségével
tesztelhetjuk a f6bb folyamatokat: regisztracid, belépés, kilépés. Probaljuk ki, hogy belépés utan
megjelennek-e az idgjarasadatok.

Felhasznaloi adatok megfigyelése kliensoldalon

Az utmutatot kovetve Blazor projekt Pages mappdjaba vegyunk fel egy uj Razor komponenst (Razor
component, nem Razor page!) User.razor névvel. Ebbe masoljuk bele a mintakomponens kodjat.
Ezutan a /User cimre navigalva az access token adatait lathatjuk.

Egyéb Azure B2C funkciok

Felhasznald/csoport szintii hozzaférés-szabalyozas

A felhaszndldkat tipikusan csoportokba soroljuk és az egyes csoportokra nézve osztjuk ki a
hozzaférést. Az Azure AD B2C nem rendelkezik csoportadminisztracios képességgel, azonban a
kapcsolodé Azure AD-ba fel lehetne venni csoportokat, a felhaszndldk csoportba rendezhetnénk,
kivehetnénk stb. Ehhez egyrészt az Azure AD-ban is magas szintl jogok kellenének, masrészt sajat
B2C-beli policy-t (nem wugyanaz, mint az ASPNET Core authentikiaciéos hdazirend) Kkellene
implementalni, amivel a tokenelddllitast tudnank testre szabni, hogy az AD csoporttagsag is
bekeriljon a tokenbe. Ez elég maceras, még ugy is, hogy van ra hivatalos példaimplementacio, ezért
egy joval fapadosabb megolddast kovetink.

Kildjuik le a tokenben a felhaszndlé B2C-beli azonositojat. A regisztracios-belépési folyamat (User
flows) bedllitasai kozott az Application claims menupontban jeloljik ki az User’s Object ID claim-et.
Mentsunk.

Vegyunk fel egy Uj hazirendet a szerveroldal legfelsd szint{i kodjaba ugy, hogy azt csak konkrét B2C-
beli azonositéval rendelkezé felhasznalok teljesitsék. A mar regisztralt felhasznalok adatait, tobbek
kozott az Object ID-jat is megnézhetjik a B2C Users nevi oldalan, a kivant felhasznalot kivalasztva.
Vélogassunk dssze par olyan Object ID-t, aminek a felhasznaldjanak ismerjik a belépési adatait.

builder.Services.AddAuthorization(options=>
options.AddPolicy("Admin", policy =>
policy.RequireClaim(
ClaimConstants.ObjectId
//Negylink fel egy-két Object ID-t a regisztralt felhasznaldk kozil
, "'00000000-0000-0000-0000-000000000000"
, "00000000-0000-0000-0000-000000000000"))

(r) Egyértelmiien elegansabb lenne, ha ez a csoporttagsdg konfigurdciobol vagy az
- Azure B2C csoportkezel6 funkcidjabol szarmazna.

A fenti hazirend szerint az teljesiti az Admin hazirendet, akinek az Object ID-ja a felsoroltak kozt
van - azaz a megadott értékek kozil elég legaldbb egynek megfelelni a hazirend teljesitéséhez.

127

https://learn.microsoft.com/en-us/aspnet/core/blazor/security/webassembly/hosted-with-azure-active-directory-b2c?view=aspnetcore-6.0#inspect-the-user
https://github.com/dotnet/aspnetcore/blob/v6.0.4/src/Components/WebAssembly/testassets/Wasm.Authentication.Client/Pages/User.razor
https://learn.microsoft.com/en-us/azure/active-directory-b2c/custom-policy-overview
https://github.com/azure-ad-b2c/samples/tree/master/policies/groups

Koveteljiik meg az uj hazirendet a kontrolleren.

[Authorize("Admin")] //hdzirend megadasa

Miveleteken is elhelyezhetiink Authorize attributumot. Minden elemre (kontroller,
O mivelet) nézve a lefutdsdnak feltétele, hogy az Osszes szil6elemen megkdvetelt
w
minden hdzirend teljestiljon.

A Blazor alkalmazasban lépjink ki, majd be, végul probdljuk ki az API hivast el6bb egy az uj
hézirendben elvart Object ID-val rendelkezd felhasznaldval, majd egy egyéb felhasznaldval
(példaul egy ujonnan regisztralttal). Utoébbi esetben nem szabad eredményt kapnunk, de a
szerveralkalmazds konzoljan naplozodik a kérés elutasitasa (ha a naplézasunk elég részletes).

Az Object ID a tokenbe oid kulccsal kertl be és a felhaszndl6t azonositja. Hasonlo,
O bar nem teljesen azonos a sub kulcs, ami alkalmazds-felhaszndlé kombinaciora
w .

egyedi.

Elfelejtett jelszo funkcio

Ezt egyszerlien csak be kell kattintani a regisztracids folyamat bedllitasai kozott. Probdljuk ki a
bejelentkez0 feliileten a Forgot your password? link aktivalasaval.

Social login

A B2C szamos kilsd identitasszolgdltatoval (IDP) képes egyuttmiikodni, példaul Google, Twitter,
GitHub, Facebook stb. Es persze Microsoft.

Az integracidhoz szikségink lesz egy felhasznaldi/fejleszt6éi fiokra a kivalasztott
identitasszolgaltatondl. Az integraciohoz kovessik a hivatalos utmutatot, példdul a Microsoft
Account-ra (MSA) vonatkozot.

Az MSA integracio nehézsége, hogy els6 lépésben egy un. Microsoft account
application-t kell 1étrehozni, de ehhez a B2C-s tenant nem jo, egyetemi, céges

A tenantokndl pedig korilményes, mert a sziikséges Azure AD fellleteket gyakran
letiltjak. Megoldas lehet, ha a privat MS fiokkal (@hotmail.com, @outlook.com)
lépink be az Azure portalra és igy a sajat tenantunkban hozzuk létre az MS
account application-t.

Az integraciot kovet6en a folyamatainkban felhasznalhatjuk a kulsé IDP-t, ehhez a folyamat
bedllitasainal 1év{ Identity providers mentipontban véalasszuk ki az adott folyamatban engedélyezni
kivant IDP-ket. Ezutan a regisztracios, belépés feliileteken megjelennek az engedélyezett IDP-khez
tartozo feltlet(elem)ek.

A Kkliensalkalmazas és a RP mddositasara nincs szikség.

128

https://learn.microsoft.com/en-us/azure/active-directory/develop/access-tokens#payload-claims
https://learn.microsoft.com/en-us/azure/active-directory-b2c/add-password-reset-policy?pivots=b2c-user-flow#self-service-password-reset-recommended
https://learn.microsoft.com/hu-hu/azure/active-directory-b2c/active-directory-b2c-setup-msa-app
https://learn.microsoft.com/hu-hu/azure/active-directory-b2c/active-directory-b2c-setup-msa-app
https://learn.microsoft.com/en-us/azure/active-directory-b2c/identity-provider-microsoft-account?pivots=b2c-user-flow#create-a-microsoft-account-application
https://learn.microsoft.com/en-us/azure/active-directory-b2c/identity-provider-microsoft-account?pivots=b2c-user-flow#create-a-microsoft-account-application

Védett API hivasa Postmanbol

Hozzunk létre uj HTTP kérést (HTTP Request) Postman-ben. A kérés legyen GET tipusuy, a cim
legyen egy azonositast igényld (védett) mivelet cime. A generdlt projektben ilyen a
WeatherForecastController.Get() muvelete, adjuk meg ennek a HTTPS cimét, pl:
https://localhost:5001/WeatherForecast

Probaljuk meghivni elkiildeni a kérést, 401-es hibakddot kell kapjunk a vdalaszban sikertelen
azonositas miatt.

Vegyuk fel az Azure portdlon a Kkliensalkalmazashoz a https://oauth.pstmn.io/vl/callback cimet
redirect URI-ként.

Mivel az alkalmazasunk HTTPS cimét haszndljuk, és ez a cim daltaldban csak
fejleszt6i tanusitvannyal rendelkezik, sziikség lehet a tanusitvanyellen6rzés
kikapcsolasara Postman-ben.

A Postman kérés Authorization filén a bal oldalt toltsik ki az aldbbiak szerint:

* Type: OAuth 2.0

* Add Authorization data to: Request Headers
A jobb oldalt pedig az aldbbiak szerint:

* Current token rész
o Access Token: ez majd a sikeres belépés utan toltodik ki
- Header Prefix: Bearer
* Configure New Token - Configuration Options rész
o Token name: mi valasztjuk (pl. b2c), ezzel azonositjuk a tokent a Postmanen belil
o Grant Type: Authorization Code (With PKCE)

o Callback URL: https://oauth.pstmn.io/v1/callback, illetve az Authorize using browser ne legyen
bepipdlva. Ilyenkor a Postman sajat bongészdablakot fog feldobni. Ha bepipdljuk, akkor az
alapértelmezett bongész6ben fog elindulni a belépési folyamat.

o Auth URL: Az Azure portdlon a kliensalkalmazdas Overview mentipontjaban felill nyomjuk
meg az Endpoints gombot. Jobb oldalon megjelennek a B2C IDP URL-jei. Ezek kozul a Azure
AD B2C OAuth 2.0 authorization endpoint (v2) URL kell. Az URL-ben a <policy-name>
helydrzét le kell cserélnunk a belépési folyamat nevére. Példa:
https://myb2c.b2clogin.com/myb2c.onmicrosoft.com/b2¢_1_susi/oauth2/v2.0/authorize

o Access Token URL: ugyanugy szerezzik meg, mint az Auth URL-t, csak itt a Azure AD B2C
OAuth 2.0 token endpoint (v2) URL kell. A hely6rz6t itt is cserélni kell. Példa:
https://myb2c.b2clogin.com/myb2c.onmicrosoft.com/b2¢_1_sg/oauth2/v2.0/token

o Client ID: a kliensalkalmazdas Client ID-ja (amit a projektgeneralaskor --client-id-ként is
megadtunk)

o Client Secret: maradjon tires

129

https://learning.postman.com/docs/sending-requests/requests/#creating-requests
https://localhost:5001/WeatherForecast
https://learning.postman.com/docs/sending-requests/certificates/#troubleshooting-certificate-errors

o Code Challenge Method: SHA-256
o Code Verifier: maradjon ures

> Scope: az altalunk felvett scope teljes scope URL-je (pl.
https://myb2c.onmicrosoft.com/00000000-0000-0000-0000-000000000000/API.Access). Az
Azure portalon a kliensalkalmazads API permission menipontjdban kattintsunk rd a scope
nevére. Jobb oldalon megjelenik az URL.

o State: maradjon ures

o Client Authentication: maradjon az el0re beallitott
Alul kérjik el a tokent a Get New Access Token gombbal. Egy bongész6ablak fog megnyilni, az Azure
B2C belépési felillettel. Lépjink be egy olyan felhaszndaloval, ami jogosult a védett mivelet
meghivasara. Miutan beléptink, a Postman ki tudja olvasni a tokent, ami bekertil a Current token

részre. Ezutdn kuldjuk ujra a kérést. Most mar sikerulnie kell, vissza kell kapnunk az
id6jarasadatokat.

130

Automatizalt tesztelés

Segédeszkozok

» kapcsolddo GitHub repo: https://github.com/bmeaut/WebApiLab

o elég csak zip-ként letolteni a netb-test-init dgat, nem kell klonozni

Bevezetés

Az automatizdlt tesztelés az alkalmazasfejlesztés egyik fontos lépése, mivel ezzel tudunk
meggy6zddni arrdl, hogy egy-egy funkcié akkor is helyesen miikodik, ha az alkalmazas egy masik
részén valamit moddositunk. Hogy ezt az ellenérzést ne kelljen minden egyes alkalommal
manualisan végrehajtani az alkalmazason, programozott teszteket szoktunk irni, amelyek
futtatasat CI/CD folyamatokban automatizalhatjuk.

A tesztek tobb tipusat ismerhetjiik:

* Unit test (egységteszt) célja, hogy egy adott osztdly egy metodusanak a viselkedését onmagaba
vizsgaljuk ugy, hogy a fuiggbségeit mock/fake objektumokkal helyettesitjik, hogy azok a
tesztesetnek megfelelen viselkedjenek vagy megfigyelhetdek legyenek.

» Integracios teszt / End-2-end teszt / funkciondlis teszt esetében a célunk, hogy a teljes
rendszert meghajtsuk ugy, hogy az integraciok (SQL kapcsolat, egyéb szolgaltatasok) is
tesztelésre kerulnek, illetve a BE szempontjabol vizsgaljuk azt is, hogy a rendszer interfésze
helyesen vélaszol-e a kiilonb6z8 kérésekre.

* Ul teszt esetében azt vizsgaljuk, hogy a felhaszndldi fellilet a kiilonb6z6 felhaszndldi
interakciokra, eseményekre helyesen rajzolja-e ki az elvart feliileteket.

A fenti tesztelési modok mindegyike fontos, de érdemes egy olyan egészséges egyensulyt
megtaldlni, ahol a lehet6 legjobban lefedhet6ek a legfontosabb funkcionalitdsok kiilénb6z6
tesztesetekkel.

Automatizalt tesztelés .NET kornyezetben

Automatizalt tesztelésre tobb Kkeretrendszer is hasznalhaté .NET kornyezetben, de ASP.NET Core
alkalmazasok esetében a legelterjedtebb ilyen konyvtar az xUnit. Ebben a keretrendszerben
lehet6ségiink van tesztesetek definidldsdra, akar a bemenetek varidlasaval is, illetve kell6en
rugalmas, ahhoz, hogy a tesztek feldolgozasi mechanizmusa kiterjeszthetd legyen.

Unit tesztek esetében az osztalyok fligg6ségeit le kell cseréljik, amire tobb library is lehetdséget
nyujt. A legelterjedtebbek a Moq és az NSubstitute.

Gyakran sziikséges funkcid, hogy a bemené adatok elddllitdsa sordn szeretnénk a valdsadgra
hasonlitd véletlenszer(i/generalt példaadatokat megadni. Ehhez egy bevalt osztdlykonyvtar a
Bogus.

A tesztesetek elvart eredményének a vizsgalatat asszertdlasnak nevezzik (assert), aminek az

131

https://github.com/bmeaut/WebApiLab
https://github.com/bmeaut/WebApiLab/archive/refs/heads/net6-test-init.zip
https://learn.microsoft.com/en-us/dotnet/core/testing/unit-testing-best-practices#lets-speak-the-same-language
https://xunit.net/
https://github.com/moq
https://nsubstitute.github.io/
https://github.com/bchavez/Bogus

irdsahoz nagy segitséget tud nyujtani a Fluent Assertions konyvtar. Ez nem csak a szintaktikat
teszi olvashatobba fluent szintakszissal, hanem tobb olyan beépitett segédlogikat tartalmaz, amivel
tomorebbé tehetd az assert logika (pl.: objektumok mélységi 6sszehasonlitasa érték szerint).

Integracios tesztelés

Ezen gyakorlat keretében csak integracids teszteket fogunk késziteni.

Teszt projekt

Vegyunk fel a solutionbe egy 1j xUnit (.NET 6) tipusu projektet WebApiLab.Tests néven. A 1étrejove
tesztosztalyt és fajljat nevezzik at ProductControllerTests névre. Ide fogjuk a ProductControllerhez
kapcsolodd miiveletekre vonatkozo integracios teszteket késziteni.

Vegyiik fel az alabbi NuGet csomagokat a teszt projektbe. A Bogusrol és a Fluent Assertionsrél mar
volt sz8. A Microsoft.AspNetCore.Mvc.Testing csomag olyan segédszolgaltatasokat nyujt, amivel
integracios tesztekhez egy in-process teszt szervert tudunk futtatni, és ennek a meghivasaban is

segitséget nyujt. A projektfajlban a tobbi PackageReference mellé (a projekten jobbklikk > Edit
Project File):

<PackageReference Include="Bogus" Version="34.0.2" />
<PackageReference Include="FluentAssertions" Version="6.6.0" />
<PackageReference Include="Microsoft.AspNetCore.Mvc.Testing" Version="6.0.4" />

Vegyuk fel az Api projektet projekt referenciaként a teszt projektbe. A projektfajlban egy masik
ItemGroup mellé:

<ItemGroup>
<ProjectReference Include="..\WebApilLab.Api\WebApilLab.Api.csproj" />
</ItemGroup>

Teszt szerver

A tesztszervernek meg kell tudnunk mondani, hogy melyik osztaly adja az alkalmazasunk belépési
pontjat. Viszont mivel top level statement szintaktikdju a Program osztalyunk, annak lathatésaga
internal, ami a tesztelés szempontjdbdl nem szerencsés (a hasonld esetekben alkalmazott
InternalsVisibleTo sem lenne ebben az esetben megoldas). Helyette tegyik a Program osztalyt
publikussa egy partial deklaracioval. Vegyuk fel az alabbi partial kiegészitést az API projektben a
legfelsd szintli kdd végére:

public partial class Program { }

Az integrdcios tesztinkhoz az in-process teszt szervert egy WebApplicationFactory<TEntryPoint>
leszarmazott osztaly fogja létrehozni. Ez a segéd 6sosztaly a fenti Microsoft.AspNetCore.Mvc.Testing
csomaghol jon. Itt lehet6ségliink van a teszt szervertinket konfiguralni, igy akar a DI konfiguraciot

132

https://fluentassertions.com
https://stackoverflow.com/a/69483450/1406798

is.

Hozzunk létre egy osztalyt a teszt projektbe CustomWebApplicationFactory néven, ami szarmazzon a
WebApplicationFactory<Program> osztalybol és definialjuk feliil a CreateHost metddusat.

public class CustomWebApplicationFactory : WebApplicationFactory<Program>

{
protected override IHost CreateHost(IHostBuilder builder)

{
builder.UseEnvironment("Development");
builder.ConfigureServices(services =>

{
services.AddScoped(sp => new DbContextOptionsBuilder<AppDbContext>()

.UseSqlServer(@"connection string")
.UseApplicationServiceProvider(sp)
.Options);

b

var host = base.CreateHost(builder);

using var scope = host.Services.CreateScope();
scope.ServiceProvider.GetRequiredService<AppDbContext>()
.Database.EnsureCreated();

return host;

Megfigyelhetjiik, hogy itt is LocalDB-t haszndlunk (mivel integracids teszt), de a connection stringet
lecseréjik a DI konfigurdcioban. A connection string alapvetden egyezhet a tesztelend6 projektben
haszndlttal, csak az adatbdazisnevet valtoztassuk meg. Az adatbazis automatikusan létrejon és a
migraciok is lefutnak az EnsureCreated meghivasaval - az elsd lefutdskor.

Mivel az AppDbContext Scoped életciklussal van regisztralva a DI-ba, sziikséges
O létrehozni egy scope-ot, hogy el tudjuk kérni a DI konténert6l. Ezt természetesen
et ha HTTP kérés kozben lennénk az ASP.NET Core automatikusan megtenné.

Kontrollertesztek elokészitése

Alakitsuk 4t a ProductControllerTests osztalyt. Az osztdly valdsitsa meg az
IClassFixture<CustomWebApplicationFactory> interfészt, amivel azt tudjuk jelezni az xUnit-nak, hogy
kezelje a CustomWebApplicationFactory életciklusat (tesztek kozott megosztott objektum lesz), illetve
pluszban lehet6ségiink van ezt a tesztosztalyokban konstruktoron keresztiil elkérni.

public partial class ProductControllerTests : IClassFixture
<CustomWebApplicationFactory>
{

private readonly WebApplicationFactory<Program> _appFactory;

133

https://xunit.net/docs/shared-context#class-fixture

public ProductControllerTests(CustomWebApplicationFactory appFactory)

{
_appFactory = appFactory;

}

Az xUnit nem tartalmaz DI konténert. Csak azok a konstruktorparaméterek
toltédnek ki, amelyek a dokumentacidoban megtalalhatok. A

A CustomWebApplicationFactory tipusu paraméter azért toltddik ki, mert az osztaly az
interfészében jelzi, hogy megosztott kontextusként CustomWebApplicationFactory-t
Var.

Hozzunk létre a Bogus konyvtarral egy olyan Faker<Product> objektumot, amivel az API-nak
kildend6 DTO objektum generdlasat végezzik el. Azonositéként kildjink 0 értéket, mivel a
létrehozas mitiveletet fogjuk tesztelni, kategoria esetében pedig az 1-et, mivel a migracié 4altal
létrehozott 1-es kategoriat fogjuk tudni csak hasznalni. A tobbi esetben hasznaljuk a Bogus beépitett
lehetGségeit a név és a szam értékek random generalasahoz.

/] ...
private readonly Faker<Product> _dtoFaker;

/**/public ProductControllerTests(CustomWebApplicationFactory appFactory)
/**/{
/] ...
_dtoFaker = new Faker<Product>()
.RuleFor(p => p.Id, 0)
.RuleFor(p => p.Name, f => f.Commerce.Product())
.RuleFor(p => p.UnitPrice, f => f.Random.Int(200, 20000))
.RuleFor(p => p.ShipmentRegion,
f => f.PickRandom<Dal.Entities.ShipmentRegion>())
.RuleFor(p => p.CategoryId, 1)
.RuleFor(p => p.RowVersion, f => f.Random.Bytes(5));
/**/}

A kliensoldali JSON sorositast a szerveroldallal kompatibilisen kell megtegyiik. Ehhez készitstink
egy JsonSerializerOptions objektumot, amibe bedllitjuk, hogy a felsorolt tipusokat szdveges
értékként kezelje. Mivel ugyanazt a példanyt akarjuk haszndlni a tesztekben, ezért a példanyt a
CustomWebApplicationFactory (mint tesztek kozotti megosztott objektum) készitse el és ajanlja ki.

public JsonSerializerOptions SerializerOptions { get; }

public CustomWebApplicationFactory()
{

JsonSerializerOptions jso = new(JsonSerializerDefaults.Web);
jso.Converters.Add(new JsonStringEnumConverter());
SerializerOptions= jso;

134

A ProductControllerTests a kiajanlott JsonSerializerOptions-t vegye at.

/] ...
private readonly JsonSerializerOptions _serializerOptions;

public ProductControllerTests(CustomWebApplicationFactory appFactory)

{
7
_serializerOptions = appFactory.SerializerOptions;

Sajnos ezt a JsonSerializerOptions példanyt minden sorositast igényl6 miiveletnél
majd at kell adnunk, mivel az alapértelmezett JSON sorositonak nincs publikusan

A elérhet6 API-ja alapértelmezett sorositdsi bedllitdsok megaddsahoz. Ugyanakkor
fontos, hogy Kkeruiljik a IJsonSerializerOptions felesleges példanyositasat.
Ugyanolyan bedllitasokat igényld miveletek lehetfleg ugyanazt a példanyt
hasznadljak. Ezt most az XUnit megosztott kontextusaval oldottuk meg.

POST miivelet alapmiikodés tesztelése

Készitsiik el az els6 tesztiinket a ProductController Post miiveletéhez. Frdemes azt az
osztalystrukturat kovetni, hogy minden miivelethez / fliggvényhez kilon teszt osztalyokat hozunk
létre, ami akar tobb tesztesetet is tartalmazhat. Ez a teszt osztalyt bedgyazott osztalyként (Post)
hozzuk létre egy kiilon partial fajlban (ProductIntegrationTests.Post.cs) a nagyobb egységhez
tartozo tesztosztalyon belul. Ezzel szépen strukturaltan tudjuk tartani a Test Explorerben (lasd
késdbb) is a teszteseteinket. Pluszban még szadrmaztassuk le a tartalmazé osztalybol, hogy a
tesztesetek elérhessék a fentebb 1étrehozott osztalyvaltozokat.

@ Frdekesség, hogy nem kell protected lathatésdgiaknak lenniiikk a fenti
- osztalyvaltozoknak, ha bedgyazott osztdly akarja elérni azokat.

/**/public partial class ProductControllerTests

/**/{
/...
public class Post : ProductControllerTests
{
public Post(CustomWebApplicationFactory appFactory)
: base(appFactory)
{
+
}
/**/}

A tesztesetek a teszt osztalyban metédusok fogjak reprezentadlni, amelyek [Fact] vagy [Theory]

135

https://github.com/dotnet/runtime/issues/31094
https://github.com/dotnet/runtime/issues/31094
https://learn.microsoft.com/en-us/dotnet/standard/serialization/system-text-json/configure-options?pivots=dotnet-6-0#reuse-jsonserializeroptions-instances

attributummal rendelkeznek. A f6 kiilonbég az, hogy a Fact egy statikus tesztesetet reprezentdl, mig
a Theory bemen6 paraméterekkel rendelkezhet.

Els6ként az egyenes agat teszteljuk le, hogy a beszuras helyesen lefut-e, és a megfeleld6 HTTP
valaszkodot, a location HTTP fejlécet, és valasz DTO-t adja-e vissza. Hozzunk létre egy figgvényt
Fact attributummal Should Succeded With_Created néven.

A teszteset az AAA (Arrange, Act, Assert) mintat koveti, ahol 3 részre tagoljuk magat a tesztesetet. Az
Arrange fazisban el6készitjik a teszteset korilmeényeit. Az Act fazisban elvégezzik a tesztelendd
miveletet. Az Assert fazisban pedig megvizsgdljuk a végrehajtott miivelet eredményeit,
mellékhatdsait.

[Fact]
public async Task Should_Succeded_With_Created()

{
// Arrange

// Act

// Assert

Az Arrage-ben kérjunk el egy a teszt szerverhez kapcsolodd HttpClient objektumot, illetve hozzunk
létre egy felkiildend6 DTO-t.

// Arrange
var client = _appFactory.CreateClient();
var dto = _dtoFaker.Generate();

Az Act fazisban kuldjunk el egy POST kérést a megfeleld végpontra a megfelel§ sorositasi
beallitasokkal és olvassuk ki a valaszt.

// Act
var response = await client.PostAsJsonAsync("/api/products”, dto, _serializerOptions);
var p = await response.Content.ReadFromJsonAsync<Product>(_serializerOptions);

Az Assert fazisban pedig fogalmazzuk meg a FluentValidation konyvtar segitségével az elvart
eredmény szabdlyait. Gondoljunk arra is, hogy a Category, Order, Id és RowVersion property-k
esetében nem az az elvart valasz, amit felkildink a szerverre, ezért ezeket szlirjik le az
0sszehasonlitasbol és vizsgaljuk ket kilon szaballyal.

// Assert
response.StatusCode.Should().Be(HttpStatusCode.Created);
response.Headers.Location
.Should().Be(
new Uri(_appFactory.Server.BaseAddress, $"/api/Products/{p.Id}")

136

https://learn.microsoft.com/en-us/visualstudio/test/unit-test-basics?view=vs-2022#write-your-tests

)i

p.Should().BeEquivalentTo(
dto,
opt => opt.Excluding(x => x.Category)
.Excluding(x => x.0Orders)
.Excluding(x => x.Id)
.Excluding(x => x.RowVersion));
p.Category.Should().NotBeNull();
p.Category.Id.Should().Be(dto.Categoryld);
p.0rders.Should().BeEmpty();
p.Id.Should().BeGreaterThan(0);
p.RowVersion.Should().NotBeEmpty();

A Fluent Assertions jelenleg még nem miikodik egyiitt a nem nullozhato referencia
tipusokkal kapcsolatos ellen6rzési logikakkal, igy az Assert részen kaphatunk
ennek kapcsan figyelmeztetéseket Should().NotBeNull() hivasok utan is.

A POST mivelet megvdltoztatnd az adatbazis allapotat, amit célszerli lenne elkerilni. Ezt
legegyszerliibben ugy érhetjik el, hogy nyitunk egy tranzakciot a tesztben, amit nem commitolunk a
teszt lefutdsa soran. Ehhez vegytk fel az alabbi utasitdsokat az Arrange fazisban.

// Arrange
_appFactory.Server.PreserveExecutionContext = true;
using var tran = new TransactionScope(TransactionScopeAsyncFlowOption.Enabled);

/**/var client = _appFactory.CreateClient();
/**/var dto = _dtoFaker.Generate();

Tranzakciot a .NET TransactionScope osztdllyal fogunk most nyitni, amin engedélyezzik az
aszinkron tamogatast is. Ahhoz pedig, hogy a tesztben létrehozott tranzakcié érvényre jusson a
teszt szerveren is, a PreserveExecutionContext tulajdonsagot be kell kapcsoljuk.

Probaljuk ki a Test » Run All Test mentipont segitségével. A Test Explorerben figyeljuk meg az
eredményt.

POST miivelet hibaag tesztelése

Készitsink egy tesztesetet, ami a hibds terméknév agat teszteli le. Mivel ez két esetet is magdban
foglal (null, ures string), hasznaljunk paraméterezhetd tesztesetet, tehat Theory-t. A teszteset
bemend paramétereit tobbféleképpen is meg lehet adni. Mi most valasszuk az InlineData
megkozelitést, ahol attributumokkal a teszteset folott kozvetlenil megadhatoak a bemend
paraméter értékei. Ilyen esetben az attributumban megadott értékeket a teszt metodus
paraméterlistajan Kkell elkérjik. Esetinkben a név hibdas értékeit varjuk els§ paraméterként,
madsodik paraméterként pedig az elvart hibatuizenetet.

[Theory]

137

https://github.com/fluentassertions/fluentassertions/issues/1115
https://learn.microsoft.com/en-us/visualstudio/test/run-unit-tests-with-test-explorer?view=vs-2022#run-tests-in-test-explorer

[InlineData("", "Product name is required.")]
[InlineData(null, "Product name is required.")]
public async Task Should_Fail_When_Name_Is_Invalid(string name, string expectedError)

{
// Arrange

// Act

// Assert

Az el6z0 tesztesethez hasonldéan hozzunk létre a teszt szervert és a DTO-t, de most a nevet a
paraméter alapjan toltsik fel. Bar elvileg nem lenne sziikséges tranzakciokezelés, hiszen nem
szabadna adatbazis modositasnak torténnie, a biztonsag kedvéért implementdljuk itt is a
tranzakciokezelést.

// Arrange

_appFactory.Server.PreserveExecutionContext = true;

using var tran = new TransactionScope(TransactionScopeAsyncFlowOption.Enabled);
var client = _appFactory.CreateClient();

var dto = _dtoFaker.RuleFor(x => x.Name, name).Generate();

Az Act fazisban annyi a kilonbség, hogy most ValidationProblemDetails objektumot varunk a
valaszban.

// Act

var response = await client.PostAsJsonAsync("/api/products"”, dto, _serializerOptions);

var p = await response.Content
.ReadFromJsonAsync<ValidationProblemDetails>(_serializerOptions);

Az Assert fazisban pedig a HTTP statuszkodot és a ProblemDetails tartalmara vizsgaljunk.

// Assert
response.StatusCode.Should().Be(HttpStatusCode.BadRequest);

p.Status.Should().Be(400);

p.Errors.Should().HaveCount(1);
p.Errors.Should().ContainKey(nameof(Product.Name));
p.Errors[nameof(Product.Name)].Should().ContainSingle(expectedError);

Probaljuk ki a Test » Run All Test mentiipont segitségével. Figyeljik meg a tesztek hierarchidjat is, a
POST miivelethez kapcsolodo tesztek egy csoportba lettek 6sszefogva.

(r) Eszrevehetjiik, hogy a tranzakcitkezeléssel kapcsolatos kédot duplikéltuk, ennek
- elkerulésére példaul példaul tesztfuiggvényre teheto attributumot vezethetiink be.

138

https://github.com/xunit/samples.xunit/blob/main/AutoRollbackExample/AutoRollbackAttribute.cs

Naplozas

A tesztek lizeneteket naplézhatnak egy specialis tesztkimenetre. Ehhez minden tesztosztaly példany
kap(hat) egy sajat ITestOutputHelper példanyt a konstruktoron keresztil. Vezessik be az Uj
konstruktorparamétert a tesztosztalyban és az 6sosztalyaban is.

private readonly ITestOutputHelper _testOutput;

/**/public ProductControllerTests(CustomWebApplicationFactory appFactory
, ITestOutputHelper output)

/**/{
//...
_testOutput = output;

/**/}

//... Post bedgyazott tipus konstruktora

/**/public Post(CustomWebApplicationFactory appFactory
, ITestOutputHelper output)
: base(appFactory, output) //plusz paraméter atadasa
/**/{ }

Probaképp irjunk ki egy tizenetet a ProductControllerTests konstruktordban.

/**/_testOutput = output;
output.Writeline("ProductControllerTests ctor");

Ellenérizzik, hogy a tesztek lefuttatdsa utan Test Explorer-ben megjelennek-e az lizenetek a Test
Detail Summary ablakrész Standard output szekci6jdban. Ebbél lathatjuk, hogy minden
tesztfliggvény, s6t minden tesztfliggvény valtozat (a Theory minden bemeneti adatsora egy kulon
valtozat) meghivasakor lefut a konstruktor.

Ugyanerre a kimenetre kossik ra a szerveroldali napldzast, hogy a tesztek lefutdsa mellett ezek a
napldiizenetek is megjelenjenek. Ehhez telepitsiink egy segédcsomagot a tesztprojektbe.

<PackageReference Include="MartinCostello.Logging.XUnit" Version="0.3.0" />

A ProductControllerTests konstruktordban kossik 0Ossze a két paramétert, a
CustomWebApplicationFactory és az ITestOutputHelper példanyt a fenti segédcsomag (AddXUnit
metodus) segitségével. A tesztszerver napldzo alrendszerének adjuk meg kimenetként az xUnit
tesztkimenetét.

/**/_appFactory = appFactory
.WithWebHostBuilder(builder =>

{
builder.ConfigurelLogging(logging =>

139

https://learn.microsoft.com/en-us/visualstudio/test/run-unit-tests-with-test-explorer?view=vs-2022#view-test-details
https://learn.microsoft.com/en-us/visualstudio/test/run-unit-tests-with-test-explorer?view=vs-2022#view-test-details

logging.ClearProviders();
logging.AddXUnit(output);
3
b

Ellenérizzik, hogy a tesztek lefuttatdsa utan Test Explorer-ben megjelennek-e a szerveroldali
uzenetek is.

A végallapot elérhetd a kapcsolodd GitHub repo net6-test-megoldas agan.

140

https://github.com/bmeaut/WebApiLab/tree/net6-test-megoldas

	ASP.NET Core 6 gyakorlatok
	
	Előszó
	A jegyzet célja és célközönsége
	A jegyzet naprakészsége
	Szoftverkörnyezet
	Kódrészletek változáskövetése

	C# alapok, szintaxis
	Célkitűzés
	Hello C#!
	Debug
	Tulajdonságok (Property-k)
	Generikus kollekció
	Leszármazás, string interpoláció
	Objektum inicializálók
	Kollekció inicializáció

	C# alapok II.
	Előkészítés
	Implicit típusdeklaráció
	Init-only setter
	Indexer operátor, nameof operátor, index inicializáló
	Using static
	Nullozható típusok
	Rekord típus

	LINQ
	Előkészítés
	Lambda kifejezések, delegátok
	Func<>, Action<>
	IEnumerable<T> bővítő metódusok
	Gyakori lekérdező műveletek, yield return
	Anonim típusok
	LINQ szintaxisok
	Kitekintő: Expression<>, LINQ providerek

	C# alapok IV.
	Bejárási problémák
	Aszinkron működés
	Nem(igazán) nullozható referencia típusok
	Tuple nyelvi szinten, lokális függvények, Dispose minta

	Entity Framework Core I-II.
	Az Entity Framework leképezési módszerei
	A Code-First leképezési módszer
	Kapcsolat az adatbázissal
	Sémamódosítás
	Adatbázis naplózás
	Beszúrás
	Ősfeltöltés (seeding) elvárt adattartalom megadásával
	Lekérdezések
	Beszúrás több-többes kapcsolatba
	Kapcsolódó entitások betöltése
	Több-többes kapcsolat közvetlen navigálása
	Módosítás, Find
	Törlés
	Felsorolt típus, értékkonvertálók
	Tranzakciók

	ASP.NET Core alapszolgáltatások
	Projekt létrehozása
	Végrehajtási pipeline, middleware-ek
	Hosztolási lehetőségek a fejlesztői gépen
	Alkalmazásbeállítások vs. indítási profilok
	Web API
	Típusos beállítások, IOptions<T>
	User Secrets
	Epilógus - WebApplicationBuilder

	ASP.NET Core webszolgáltatások I.-II.
	Kiegészítő anyagok, segédeszközök
	Kiinduló projektek beüzemelése
	Az EF bekötése az ASP.NET Core DI, naplózó, konfiguráló rendszereibe
	EF entitások használata az API felületen
	Köztes réteg alkalmazása
	DTO osztályok
	BLL funkciók implementációja
	REST konvenciók alkalmazása
	Hibakezelés
	Aszinkron műveletek
	Végállapot

	ASP.NET Core webszolgáltatások III.
	Kiegészítő anyagok, segédeszközök
	Kiinduló projektek beüzemelése
	Egyszerű kliens
	OpenAPI/Swagger szerveroldal
	OpenAPI/Swagger kliensoldal
	Hibakezelés II.
	Postman használata

	Felhasználókezelés Azure B2C használatával
	Kiegészítő anyagok, segédeszközök, előfeltételek
	Bevezetés
	Hosted WebAssembly alkalmazásból védett API hívása
	Egyéb Azure B2C funkciók
	Védett API hívása Postmanből

	Automatizált tesztelés
	Segédeszközök
	Bevezetés
	Automatizált tesztelés .NET környezetben
	Integrációs tesztelés
	Naplózás

