
ASP.NET Core 6 gyakorlatok
Simon Gábor, Tóth Tibor, Szabó Gábor

1.6 - hatodik kiadás, 2023. május

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar
Automatizálási és Alkalmazott Informatikai Tanszék

1117 Budapest, Magyar tudósok körútja 2. (Q épület)

https://www.bme.hu
https://www.vik.bme.hu
https://www.aut.bme.hu

Simon Gábor
simon.gabor@vik.bme.hu

Tóth Tibor
toth.tibor@vik.bme.hu

Szabó Gábor
szabo.gabor@podnet.hu

Hibajelentések, közreműködők
https://github.com/bmeaut/aspnetcorebook

ISBN 978-963-421-878-4

1

https://www.bme.hu
https://www.vik.bme.hu
https://www.aut.bme.hu
mailto:simon.gabor@vik.bme.hu
mailto:toth.tibor@vik.bme.hu
mailto:szabo.gabor@podnet.hu
https://github.com/bmeaut/aspnetcorebook

Előszó

A jegyzet célja és célközönsége
Ezen jegyzet elsődlegesen a BME Villamosmérnöki és Informatikai Karán oktatott Szoftverfejlesztés
.NET platformra című tárgyhoz készült, célja, hogy segítséget nyújtson egyrészt a
gyakorlatvezetőnek a gyakorlat megtartásában, másrészt a kurzus hallgatóinak a gyakorlat otthoni
utólagos megismétléséhez, a tanult ismeretek átismétléséhez.

Ebből kifolyólag nem tekinthető egy teljesen kezdő szintű bevezető C# tankönyvnek, hiszen
erőteljesen épít más kari tárgyak (pl. Szoftvertechnikák, Adatbázisok) által lefedett ismeretekre, de
még inkább a Szoftverfejlesztés .NET platformra című tárgy előadásaira.

A feltételezett előismeretek:

• C# és objektumorientált nyelvi alapok

◦ operátorok, változók, tömbök, struktúrák, függvények fogalma

◦ operátor felüldefiniálás és függvényváltozatok

◦ alapvető memóriakezelés (heap, stack), mutatók fogalma, érték és referencia típusok

◦ alapvető vezérlési szerkezetek (ciklus, elágazás, stb.), érték- és referencia szerinti
paraméterátadás, rekurzió

◦ osztály, osztálypéldány fogalma, static, new operátor, osztály szintű változók, generikus
típusok

◦ leszármazás, virtuális tagfüggvények

◦ C# esemény, delegate típusok és delegate példányok

◦ Visual Studio használatának alapjai

◦ operációs rendszer kapcsolatok, folyamatok, szálak, parancssor, parancssori
argumentumok, környezeti változók

• SQL nyelvi alapok (SELECT, UPDATE, INSERT, DELETE utasítások), valamint alapvető relációs
adatmodell ismeretek (táblák, elsődleges- és idegen kulcsok)

A fentiek elsajátításához segítséget nyújthatnak Reiter István ingyenesen letölthető könyvei.

A szövegben megtalálhatók a gyakorlatvezetőknek szóló kitételek („Röviden mondjuk el…",
„Mutassuk meg…", stb.). Ezeket mezei olvasóként érdemes figyelmen kívül hagyni, illetve szükség
esetén a kapcsolódó elméleti ismereteket az előadásanyagból átismételni.

A jegyzet naprakészsége
Az anyag gerincét adó .NET Core / .NET 5,6 platform jelenleg igen gyors ütemben fejlődik. A .NET
Core 1.0-s verzió óta a készítők törekednek a visszafelé kompatibilitásra, azonban az eszközkészlet
és a korszerűnek és ajánlottnak tekinthető módszerek folyamatosan változnak, finomodnak.

A jegyzet elsődlegesen az alábbi technológiai verziókhoz készült:

2

https://www.aut.bme.hu/Course/dotnet
https://www.aut.bme.hu/Course/dotnet
https://reiteristvan.wordpress.com

• C# 10

• .NET 6

• ASP.NET Core 6

• Visual Studio 2022

Ahogyan a fenti verziók változnak, úgy avulhatnak el a jegyzetben mutatott eljárások.

Szoftverkörnyezet
A gyakorlatok az alábbi szoftverekből álló környezethez készültek:

• Windows 10 operációs rendszer

• Visual Studio 2022 (az ingyenes Community verzió elég) az alábbi workloadokkal:

◦ .NET desktop development

◦ Data storage and processing

◦ ASP.NET and web development

◦ Azure Development

• Telerik Fiddler Classic

• Postman

A .NET (korábban .NET Core) széleskörű platformtámogatása miatt bizonyos nem Windows
platformokon is elvégezhetők a gyakorlatok Visual Studio helyett Visual Studio Code használatával -
azonban a gyakorlatok szövege a Visual Studio használatát feltételezi.

Kódrészletek változáskövetése
Az egyes gyakorlatok során gyakori eset, hogy a C# kód egy részét továbbfejlesztjük,
megváltoztatjuk. Ilyen esetben a nem változó sorok a jegyzetben üres kommenttel (/**/)
kezdődnek, míg az előző verzióhoz képest kikerülő kódrészletek kommentként jelennek meg. Ha
egyik előbbi jelölés sincs, és egyéb komment sem jelzi másként, akkor az új kódrészletnek számít.

/**/using System; //ez egy korábban meglévő kódsor, változatlan
 using static System.Console; //ez új kódsor

/**/foreach (var dog in dogs) //ez egy korábban meglévő kódsor, változatlan
 /* Console.*/WriteLine(dog); //ez a sor megváltozott, az elejéről kód törlődött
 /* Console.*/ReadLine(); //ez a sor megváltozott, az elejéről kód törlődött


A JSON formátum alapértelmezésben (RFC szerint) nem támogatja a kommenteket,
így ha JSON kódrészletet másolunk, győződjünk meg arról, hogy nem maradt-e a
beillesztett kódban komment, mert problémát okozhat.

3

https://visualstudio.microsoft.com/downloads/
https://www.telerik.com/fiddler/fiddler-classic
https://www.postman.com/
https://code.visualstudio.com/

C# alapok, szintaxis

Célkitűzés
A gyakorlat során a hallgatók elkezdenek megismerkedni a C# nyelv alapjaival, mondattanával, a
Visual Studio fejlesztőeszközzel. Röviden, dióhéjban hasonlítsuk össze más programozási
nyelvekkel (Java, C/C++, Python, JavaScript).

Célunk, hogy a hallgatók legalább részben megértsék és ráérezzenek a C# szintaktikájára,
megismerkedjenek alapvető nyelvi elemekkel és konstrukciókkal.

Bár a fő platformunk a későbbiekben a .NET 6 lesz, ezen a gyakorlaton még a klasszikus .NET
Framework-öt használjuk.

Hello C#!
A Visual Studio indítóablakában válasszuk a Create a new project opciót. Magyarázzuk el, hogy van
lehetőségünk előre gyártott sablonokból létrehozni projekteket, illetve hogy

• egy C# projekt egy szerelvénnyé fordul (.dll, .exe).

• a Solution dolga, hogy logikailag összefogja a Project-eket (több-többes kapcsolatban vannak).

• a projektek között referenciákat adhatunk másik projektekre úgy, hogy a fordítási
mechanizmus figyelembe veszi a referenciákat és szükség esetén újrafordítja a szerelvényeket.

• a projektek hivatkozhatnak külső forrásból származó szerelvényekre is NuGet csomagok
formájában. A NuGet egy egységes módszer szerelvényeink terjesztésére.

Hozzunk létre egy új C# Console Application-t! Ehhez keressük ki a sablonok közül a Console App
(.NET Framework) nevűt. A neve legyen HelloCSharp.


A kikereséshez használhatjuk felül a szövegdobozos szűrőt, illetve a legördülő
listás szűrőket is (Nyelv: C#, Platform: Windows, Projekttípus: Console)

A sablon konfigurációjánál adjunk meg egy olyan helyet, ahová van írási jogunk. A Place solution
and project in the same directory opciót kapcsoljuk be, így nem fog létrejönni egy felesleges mappa a
könyvtárszerkezetben. A .NET Framework verziót állítsuk legalább 4.7-esre.

Észrevehetjük, hogy az alkalmazás sablonok között sima és (.NET Framework) jelölésűek is vannak.
A simák alapvetően a modernebb .NET Core/.NET 5,6 platformot célozzák, a .NET Framework
ezekhez képest egy régebbi platform.

• .NET Core: a .NET Framework modularizált, modernizált, cross-platform és nyílt forráskódú
megvalósítása. Kisebb NuGet csomagokban érhető el a teljes .NET Framework funkcionalitása
(Collections, Reflection, XML feldolgozás, stb.).

• .NET Framework: a „klasszikus”, teljesértékű .NET keretrendszer, out-of-the-box támogatja a
legelterjedtebb alkalmazásfejlesztési lehetőségeket. A .NET Core megjelenését követően is
támogatott, enterprise környezetekben használatos, ugyanis néhány enterprise technológia

4

elsődlegesen csak ebben támogatott (pl. szerver oldali WCF). Csak Windows-ra telepíthető.

• .NET 5 és fölötte: A .NET Core 3.1 utáni fő verziói. Már elnevezésében is jelzi, hogy ez egyben a
korábbi .NET Core és .NET Framework verzióknak is utódja.

Az alábbi elemeket ismertethetjük, mielőtt a kódírásba belekezdünk:

• Rövid áttekintés az IDE-ről: menüsáv, Solution Explorer, Properties, Output, Error List ablakok,
ablakozórendszer. Mutassuk meg, hogy drag-n-drop műveletekkel testreszabható a felület, pl.
helyezzük a Solution Explorert a képernyő bal oldalára. Ha valaki véletlenül átrendezi az

alapértelmezett elrendezést, a Window › Reset Window Layout lehetőséggel visszaállíthatja.

• A projekt tulajdonságok (jobb klikk › Properties) oldalán az Application fülön megnézhetjük,
hogy az Output type értéke határozza meg, hogy milyen jellegű (konzolos, Windows,
osztálykönyvtár) alkalmazást készítünk.

• Mutassuk meg, hogy milyen alapvető szerelvényekre adunk referenciát a projektben!

• Nézzük meg a Program.cs fájl tartalmát és fussuk át a látható elemeket!

• Magyarázzuk el a using és namespace kulcsszavak jelentését, egymáshoz képesti viszonyukat! A
névtér értéke egy újonnan létrehozott fájlnál alapértelmezetten Projektnév.Mappaszerkezet
alakú, érdemes konvencionálisan ezt követni. Sok hallgatónál nem tiszta, hogy hogyan
viszonyul egymáshoz a névtér és a szerelvény fogalma, ezért próbáljuk meg ezt tisztázni!

• Utaljunk arra, hogy alapvetően kizárólag objektumorientáltan tudunk kódot írni, így a Program
egy osztály, a Main belépési pont pedig egy statikus metódus.

• Beszéljünk röviden a C# elnevezési konvenciókról! A publikus elemeket (pl. Java-val és
JavaScripttel ellentétben) és minden metódust ökölszabályként PascalCasing elnevezési
konvenció követ, a nem publikus elemeknél camelCasing (ezek közül vannak kivételek és más
konvenciók, de ez egy gyakori megközelítés).

Egészítsük ki a Main metódust az alábbi kódrészlettel, közben hívjuk fel a figyelmet az IntelliSense
használatára:

int a = 5;
int b = 7;
Console.WriteLine(a + b);
Console.ReadLine();

Az IntelliSense-t demonstrálhatjuk az alábbi módon:

• A kódban bármely logikus helyen használható az IntelliSense a Ctrl  +  Space
billentyűkombinációval, ezen kívül alapértelmezetten felugrik kódírás közben is.

• Írjuk be a Console és a .WriteLine() elemeket úgy, hogy gépelés közben az IntelliSense
legördülőből válasszuk ki az elemet, majd Tab billentyűvel véglegesítsük a választást.

• Használjuk a cw code snippetet, amit az IntelliSense is jelez, azaz írjuk be: cw majd nyomjunk
kétszer Tab -ot.

• Ha a Console.ReadLine() helyett Console.Readline()-t írunk, elsőként az IDE azonnal javítja a
hibát. Ha ezt a javítást visszavonjuk (Ctrl  +  Z), lehetőségünk van a javításra a Ctrl  +  .

5

használatával: a fejlesztőeszköz észreveszi, hogy hibát vétettünk, és felkínálja a gyakori
megoldásokat.

• Overload-ok: jelöljük ki a WriteLine hívás nyitó zárójelét, és írjuk be ismét a nyitó zárójelet. Így
előjön az overload-ok listája, amik közül a megfelelőt a föl/le iránybillentyűkkel választhatjuk ki.
Az overload listát megnyithatjuk úgy is, hogy a zárójelben bárhova írunk egy vessző karaktert.
Az overload azt jelenti, hogy ugyanazzal a függvénynévvel több, különböző szignatúrájú
metódust is felvehetünk, a megfelelő függvény kiválasztása a megadott paraméterek száma és
típusa alapján történik.

Indítsuk el az alkalmazást! Ehhez a fent található Start lehetőséget használhatjuk, de mondjuk el,

hogy ez a menü Debug › Start Debugging (F5) lehetőséggel ekvivalens.

Mutassuk be a for és foreach vezérlési szerkezeteket! A projekt Properties oldalán (Alt  +  Enter a
projekt kijelölése után) adjunk meg a Debug fülön a Start Options blokknál legalább öt tetszőleges
parancssori argumentumot (szóközzel elválasztva), pl. kutya alma béka banán ló.

for (int i = 0; i < args.Length; i++)
 Console.WriteLine(args[i]);

foreach (string arg in args)
 Console.WriteLine(arg);

Console.ReadLine();

Indítsuk el, és gyönyörködjünk.

Debug
Rakjunk egy breakpointot (F9 , vagy klikkeljünk baloldalon a függőleges sávon a kód sorszáma
mellett) a Console.WriteLine(args[i]); sorra, majd indítsuk újra az alkalmazást! Amikor a

6

breakpointon megáll az alkalmazás futása, a sor sárga színű lesz. Ekkor vigyük az egeret az i, az
args és az args.Length elemek felé, és mutassuk meg, hogy láthatjuk az aktuális értékeiket,
komplexebb objektumok esetén be tudjuk járni az objektumgráfot. A Watch ablakba is írhatunk
kifejezéseket, és megmutathatjuk a Locals ablakot is. F10 -zel (vagy a menüsoron a Step Over
elemmel) lépjünk tovább, nézzük meg, milyen sorrendben értékelődik ki a for ciklus. Az F5 -tel
továbbengedhetjük az alkalmazás futását, majd zárjuk is be.

Mutassuk meg a Conditional Breakpoint használatát is. Tegyünk még egy breakpointot a másik

Console.WriteLine-ra is. Jobb egér gomb az első breakpointon › Conditions…, majd adjuk meg az
alábbiakat: Conditional Expression Is true (i == 3). A másik breakpointon is adjunk meg feltételt:
Hit Count = 4. Mindkét alkalommal a 4. elemen (banán) állunk meg. Megjegyezhetjük, hogy a
Conditional Breakpoint használatával nem érdemes mellékhatást okozó műveleteket megadni,
illetve hogy jelentősen le tudja csökkenteni a debuggolás sebességét.

Tulajdonságok (Property-k)

Hozzuk létre a Person adatosztályt! Ehhez jobb katt a projekten › Add › Class, a fájl neve legyen
Person (a kiterjesztést automatikusan hozzábiggyeszti a Visual Studio, ha nem adjuk meg). .NET-
ben nincs megkötés arra, hogy a kódokat tartalmazó fájlok és az egyes típusok számossága hogyan
viszonyul egymáshoz: lehetséges egy kódfájlba is írnunk a teljes alkalmazás-kódot, illetve egy
osztályt is szétdarabolhatunk több fájlra (ehhez a partial kulcsszót használjuk).

A C# tulajdonság (property) egy szintaktikai édesítőszer, amely egy objektumpéldány (vagy osztály)
egy explicit (memóriabeli) vagy implicit (származtatott vagy indirekt) jellemzőjét írja le. Egy
tulajdonsággal két művelet végezhető: lekérdezés (get) és értékadás (set); ezeknek megadható külön
a láthatósága és a kettő közül elegendő egy implementálása. A legtöbb C# szintaktikai édesítőszer a
boilerplate kódok írásának elkerülése végett készült, így kevesebb kódolással érjük el ugyanazt az
eredményt (sokszor az IL kód nem is változik, gyakorlatilag hasonló a kódgeneráláshoz).

A Person osztályban hozzuk létre a string Name property-t, name osztályváltozóval (field). Ehhez
használjuk a propfull code snippetet (propf, majd TAB TAB , ezután TAB -bal lehet lépkedni a
módosítandó elemek között):

public class Person
{
 private string name;

 public string Name
 {
 get { return name; }
 private set { name = value; }
 }

 public Person(string name)
 {
 this.name = name;
 }
}

7

 Figyeljünk az osztály láthatóságára is, alapból nem publikusként generálódik!

Magyarázzuk el, hogy igazából csak két további (kódban nem látható) metódust hozunk létre,
mintha egy-egy GetName és SetName metódust készítenénk, viszont használat szempontjából
ugyanolyannak tűnik, mintha egy sima mező lenne. A settert privát láthatóságúra tesszük, ezért
csak egy Person példányon belülről tudjuk állítani a Name property értékét. Jegyezzük meg, hogy a
getterben és setterben teljesen más jellegű műveleteket is végezhetünk (pl. elsüthetünk egy
eseményt, hogy megváltozott a felhasználó neve, naplózhatjuk, hányszor kérték le a nevét, stb.). A
property egyik nagy erénye, hogy osztályon kívülről az osztályváltozóknál megszokott szintaxissal
használhatjuk.

A Main függvénybe írhatjuk például:

Person p = new Person("Eric Lippert");
p.Name = "Mads Torgersen";
Console.WriteLine(p.Name);

Debuggerrel mutassuk meg, hogy az első sor a konstruktort, míg a második a property setterét,
végül a harmadik sor ugyanazon property getterét hívja.

Mivel a backing field állításán kívül nem csinálunk semmit a property kódban, ezért használhatjuk
a propg code snippetet is:

public string Name { get; private set; }

Ez az ún. auto-implementált property szintaxis. A property által lekérdezhető-beállítható field
generálódik, arra a kódban nem is tudunk hivatkozni - ez az egységbe zárás miatt előnyös.

A láthatóság miatt a Main függvényünkben a setter hívás már nem fordul, kommentezzük ki.

//p.Name = "Mads Torgersen";

Említsük meg a prop code snippetet is, ami mindkét módosítószót publikusan hagyja. Láthatósági
módosítószót a get és set közül csak az egyik elé tehetünk ki, és az is csak szigoríthat a külső
láthatóságon (ekkor a másik a külsőt kapja meg).

Ez a megoldás az előzővel teljes mértékben ekvivalens (csak nem látjuk a generált backing fieldet,
de valójában ott van). Ha van időnk, akkor megmutathatjuk decompilerben (pl. Telerik
JustDecompile), hogy valóban így van.

Az előzőhöz hasonlóan vegyük fel a születési dátumot is. A születési dátum nem változhat,
gyakorlatilag readonly mezőről van szó. Ha egy tulajdonság értékét az objektum is csak a
konstruktorban tudja megadni, akkor a setter teljes mértékben elhagyható:

 public DateTime DateOfBirth { get; }

8

https://www.telerik.com/products/decompiler.aspx
https://www.telerik.com/products/decompiler.aspx

/**/public Person(string name
 , DateTime dateOfBirth
/**/)
/**/{
/**/ Name = name;
 DateOfBirth = dateOfBirth;
/**/}

Ez a szintaktika megegyezik azzal, mintha egy readonly mezőt használnánk, azaz a mező értéke
legkésőbb a konstruktorban inicializálandó.

Vegyünk fel neki egy azonosítót, ami egy Guid struktúra:

public Guid Id { get; } = Guid.NewGuid();

Ez egy csak lekérdezhető tulajdonság, ami konstruáláskor inicializálódik egy új véletlenszerű
azonosító értékre.

Megadhatjuk a kort, mint implicit tulajdonságot:

public int Age { get { return DateTime.Now.Subtract(DateOfBirth).Days / 365; } }

Mivel a függvényünk törzse egyetlen kifejezéssel megadható, ezért elhagyva a sallangot (return,
kapcsos zárójelek, stb.) expression bodied property szintaxissal is írhatjuk:

public int Age => DateTime.Now.Subtract(DateOfBirth).Days / 365;


Alkalmazások fejlesztésekor a legfontosabb első lépések egyike, hogy az
objektummodellünk átlátható, karbantartható és egyértelmű legyen. A C#
változatos szintaxisa nagyon sokat segít ezen célok elérésében.

Generikus kollekció
A Main metódusban vegyünk fel néhány Person objektumot, és listázzuk ki a releváns
tulajdonságaikat! Ehhez egy Person listában tároljuk a személyeket. A List generikus kollekció, azaz
típusparamétert vár, típusokkal paraméterezhető. A List típusparamétere jelzi, hogy milyen típusú
objektumokat tárol. Metódusok, tulajdonságok, típusok lehetnek generikusak. A genericitás fontos a
kódunk újrafelhasználhatósága és karbantarthatósága érdekében.

static void Main(string[] args)
{
 List<Person> people = new List<Person>();
 people.Add(new Person("Horváth Aladár", new DateTime(1991, 06, 10)));
 people.Add(new Person("Kovács István", new DateTime(1994, 04, 22)));
 people.Add(new Person("Kovács Géza", new DateTime(1998, 03, 16)));

9

 foreach (Person person in people)
 Console.WriteLine(person);

 Console.ReadLine();
}

Indítsuk el az alkalmazást, és nézzük meg, mi történik! Annyiszor íródik ki a Person osztályunk
teljes neve (fully qualified type name), ahány elem van a listában.

Leszármazás, string interpoláció
Ha a WriteLine fölé visszük az egeret, látható, hogy az overload-ok közül az hívódik meg, amelyik
objektumot vár paraméterül. Ebben az esetben a paraméter ToString metódusát hívja meg a
WriteLine, ami alapértelmezés szerint az objektum típusának teljes nevét adják vissza. Tegyük
szebbé a kiírást, definiáljuk felül az alapértelmezett ToString implementációt a Person osztályban:

public override string ToString()
{
 return string.Format("{0} ({1}) [ID: {2}]", Name, Age, Id);
}

A Person osztálynak nincs explicit megadva ősosztálya, mégis van felüldefiniálható függvénye.
Ezeket az Object osztály definiálja. Ha egy referencia típusnak nincs megadva ősosztálya, akkor az
Object lesz az.

A ToString implementációjára más szintaktikai édesítőszereket is használhatunk:

public override string ToString() => $"{Name} ({Age}) [ID: {Id}]";

A két implementáció ekvivalens, a második implementáció az ún. expression bodied method és a
string interpoláció kombinálásából adódik.

Próbáljuk ki az alkalmazást!

Hozzuk létre a Student osztályt, ami származik a Person osztályból!

public class Student : Person
{
 public string Neptun { get; set; }

 public string Major { get; set; }

 public Student(string name, DateTime dateOfBirth)
 : base(name, dateOfBirth)
 { }

10

 public override string ToString() => $"{base.ToString()} Neptun: {Neptun} Major:
{Major}";
}

Ez az osztály más megközelítéssel készült, mint a szülője, az állapota nem a konstruktor
meghívásakor töltődik fel, utólag lehet megadni setter hívásokkal. Ez egyrészt kényelmes, mert nem
kell sokparaméteres konstruktorokkal küzdeni, másrészt fel kell készülnünk arra, hogy bizonyos
adatokat nem töltenek ki.


Ha az ősosztálynak nincs paraméter nélküli konstruktora (a Person osztálynak
nincs), akkor kötelesek vagyunk a gyerek konstruktorban az ősosztály valamelyik
konstruktorát meghívni a base kulcsszóval.

Objektum inicializálók
Az object initializer segítségével az objektum létrehozását (konstruktor hívás) és a property setterek
meghívásával történő inicializálását intézhetjük egy füst alatt. Az objektum inicializáló csak
konstruktorhívás esetén használható, így pl. factory metódus által gyártott objektumpéldány esetén
nem.

A Main metódusban írhatjuk az alábbi példát:

/**/static void Main(string[] args)
/**/{
/**/ /*...*/
/**/ people.Add(new Person("Kovács Géza", new DateTime(1998, 03, 16)));
 Student elek = new Student("Fel Elek", new DateTime(2002, 06, 10))
 {
 Neptun = "ABC123",
 Major = "Info BSc"
 };
 /*...*/
/**/}

 Paraméter nélküli konstruktor esetén a () is elhagyható.


Általában 1-2 tulajdonság esetén lehet egy sorba is írni az inicializációt, több
esetén viszont általában több sorba érdemes tördelni az olvashatóság érdekében.

Láthatjuk, hogy csak az aktuális kontextusban egyébként is látható és beállítható tulajdonságokat
állíthatjuk be, egyik így beállított tulajdonság sem kötelező jellegű.

Az object initializer valóban csak az egyes tulajdonságokat állítja be, tehát csak szintaktikailag
különbözik az első definíció az alábbitól:

Student _elek = new Student("Fel Elek", new DateTime(2002, 06, 10));

11

_elek.Neptun = "ABC123";
_elek.Major = "Info BSc";
Student elek = _elek;

 Nem kell beírni, csak szemléltetés.

A háttérben tényleg egy (számunkra nem látható) temporális változóban fog történni az
inicializáció, ugyanis, ha az object initializer kivételt dob (az egyik setter által), az objektumunk
nem veszi fel a kívánt értéket.


Ebből látszik az objektum inicializáló elsődleges haszna, mégpedig, hogy nem kell
állandóan kiírogatni, hogy melyik példányra gondolunk (így elrontani sem tudjuk).

Kollekció inicializáció
Az egyszerűsített kollekció inicializáció szintaxissal a lista teljes feltöltése jóval kevesebb kóddal és
jóval olvashatóbban megadható. Ráadásul a kollekció elemeit létrehozhatjuk az objektum
inicializációs szintaxissal is. A teljes lista létrehozást és -feltöltés részt cseréljük le az alábbira.

 List<Person> people = new List<Person>
 {
 new Person("Horváth Aladár", new DateTime(1991, 06, 10)),
 new Person("Kovács István", new DateTime(1994, 04, 22)),
 new Person("Kovács Géza", new DateTime(1998, 03, 16)),
 new Student("Fel Elek", new DateTime(2002, 06, 10))
 { Neptun = "ABC123", Major="Info BSc"},
 new Student("Hiány Áron", new DateTime(2000, 02, 13))
 };
/**/ /* foreach */

Nem kell az Add függvényhívást és a lista referenciát kiírni, egyértelmű, hogy melyik listához adunk
hozzá.


Ez a forma is ugyanolyan Add függvényhívásokra fordul, mint az eredeti
változatban.

Próbáljuk ki az alkalmazást! Láthatjuk, hogy a konstruktoron keresztül teljesen inicializálható
Person példányok esetében a kiírás teljes, viszont vannak olyan Student példányok, ahol a kiírás
üres értékeket talál. Ezzel a jelenséggel a következő gyakorlatokon tovább foglalkozunk.

12

C# alapok II.

Előkészítés
Első lépésként hozzunk létre egy .NET Core C# konzolalkalmazást: a projektsablon szűrőben
válasszuk a C# nyelv - Windows platform - Console projekttípust. A szűrt listában válasszuk a
Console App sablont (most már ne a .NET Framework-ös legyen). A neve legyen HelloCSharp2. A
solutiont ne tegyük külön mappába (Place solution and project in the same directory legyen
bekapcsolva). A megcélzott framework verzió legyen .NET 6.

Legfelső szintű utasítások, implicit globális névtér-hivatkozások

Csodálkozzunk rá, hogy a generált projekt mindössze egyetlen érdemi sort tartalmaz.

Console.WriteLine("Hello, World!");

C# 10-ben a program belépési pontját adó forrásfájlt jelentősen lerövidíthetjük:

• a fájl tetején lévő using-okat elhagyhatjuk, ha azok implicit hivatkozva vannak. Az implicit
hivatkozott using-ok projekttípustól függenek és a dokumentációból olvashatjuk ki

• a Main függvényt tartalmazó osztály deklarációját (namespace blokk, class blokk) elhagyhatjuk,
ezt a fordító generálja nekünk

• a Main függvény deklarációját szintén generálja a fordító. A metódus neve nem definiált, nem
(biztos, hogy) Main. A metódus szignatúrája attól függ, milyen utasításokat adunk meg a
forrásfájlban. Például, ha nincs return, akkor void visszatérési értékű. A paramétere viszont
mindig string[] args.

• a függvény blokkba nem foglalt kód a generált belépési pont függvény belsejébe kerül.
Függvényt is írhatunk, az a belépési pontot tartalmazó generált osztály tagfüggvénye lesz.

• típusokat, osztályokat is definiálhatunk, de csak a legfelső szintű kódot követően



Fontos észrevétel a fentiekből: ezen képesség nem változtatja meg a C# semmilyen
alapvető jellemzőjét, például ugyanúgy minden függvénynek osztályon belül kell
lennie. A fordítás során a legfelső szintű utasítások kódja úgy egészül ki, ami már
minden szabálynak megfelel.


A legfelső szintű kód olyan, amit a program más részéről nem tudunk hívni, hiszen
nem is ismerjük a burkoló osztály nevét. Emiatt nincs értelme legfelső szintű
kódban láthatósági beállításnak (private, protected stb.) vagy propertynek.

Akadályozzuk meg a program azonnali lefutását egy blokkoló hívással.

/**/Console.WriteLine("Hello, World!");
 Console.ReadLine();

13

https://docs.microsoft.com/en-us/dotnet/core/project-sdk/overview#implicit-using-directives

Próbáljuk ki a generált projektet mindenféle egyéb változtatás nélkül, fordítás (projekten

jobbklikk › Build) után. Nézzünk bele a kimeneti könyvtárba (projekten jobbklikk › Open Folder

in File Explorer, majd bin › Debug › net6.0): látható, hogy az alkalmazásunkból a fordítás során
egy cross-platform bináris (<projektnév>.dll) és .NET Core v3 óta egy platform specifikus futtatható
állomány (Windows esetén <projektnév>.exe) is generálódik. Kipróbálhatjuk, hogy az exe a szokott
módon indítható (pl. duplaklikkel), míg a dll a dotnet paranccsal.

dotnet <projektnév.dll>


A dotnet parancshoz a dll könyvtárában kell lennünk. Ehhez a legegyszerűbb, ha a
Windows fájlkezelőben a megfelelő könyvtárban állva az elérési útvonal mezőt
átírjuk a cmd szövegre, majd ENTER -t nyomunk.

Adjunk a létrejövő projekthez egy Dog osztályt Dog.cs néven, ez lesz az adatmodellünk:

public class Dog
{
 public string Name { get; set; }
 public Guid Id { get; } = Guid.NewGuid();
 public DateTime DateOfBirth { get; set; }
 private int AgeInDays => DateTime.Now.Subtract(DateOfBirth).Days;
 public int Age => AgeInDays / 365;
 public int AgeInDogYears => AgeInDays * 7 / 365;
 public override string ToString() =>
 $"{Name} ({Age} | {AgeInDogYears}) [ID: {Id}]";
}

Az adatmodell az előző órán létrehozotthoz nagyon hasonlít, ennek viszont nincsen explicit
konstruktora és a Name és DateOfBirth tulajdonságok publikusan is állíthatók.

Hozzunk létre egy Dog példányt objektum inicializációs szintaxissal, majd írjuk ki ezt a példányt a
kezdeti köszöntő szöveg helyett:

 Dog banan = new Dog
 {
 Name = "Banán",
 DateOfBirth = new DateTime(2014, 06, 10)
 };
 Console.WriteLine(banan);
/**/Console.ReadLine();

Ezzel kész a kiinduló projektünk.

14

Implicit típusdeklaráció
A var kulcsszó jelentősége: ha a fordító ki tudja találni a kontextusból az értékadás jobb oldalán álló
érték típusát, nem szükséges a típus nevét explicit megadnunk, az implicit következik a kódból.
Ebben az esetben a típus egyértelműen Dog. Ha csak deklarálni szeretnénk egy változót (nem adunk
értékül a változónak semmit), akkor nem használhatjuk a var kulcsszót, ugyanis nem következik a
kódból a változó típusa. Ekkor explicit meg kell adnunk a típust.

/**/ Dog banan = new Dog
/**/ {
/**/ Name = "Banán",
/**/ DateOfBirth = new DateTime(2014, 06, 10)
/**/ };
 var watson = new Dog { Name = "Watson" };

 var unnamed = new Dog { DateOfBirth = new DateTime(2017, 02, 10) };
 var unknown = new Dog { };
 //watson = 3; ①
 //var error; ②

/**/Console.WriteLine(banan);
/**/Console.ReadLine();

① Fordítási hiba: a watson deklarációjakor eldőlt, hogy ő Dog típus, utólag nem lehet megváltoztatni
és például számértéket értékül adni. Ez nem JavaScript.

② Fordítási hiba: implicit típust csak úgy lehet deklarálni, ha egyúttal inicializáljuk is. Az
inicializációs kifejezés alapján dől el (implicit) a példány típusa.

 Próbáljuk ki a nem forduló sorokat, nézzük meg a fordító hibaüzeneteit.



A var nem a gyenge típusosság jele a C#-ban, nem úgy, mint pl. JavaScript-ben. Az
inicializációs sor után a típus egyértelműen eldől, utána már csak ennek a
típusnak megfelelő műveletek végezhetők, például egy értékadással nem
változtathatjuk meg a típust.

A var-t tipikusan akkor alkalmazzuk, ha:

• hosszú típusneveket nem akarunk kiírni

• feleslegesnek tartjuk az inicializáció mindkét oldalán kiírni ugyanazt a típust

• anonim típusokat használunk (később)

Init-only setter
Az objektum inicializáció működéséhez szükséges a megfelelő láthatóságú setter. Viszont egy ilyen
settert nem csak objektum inicializációkor lehet használni, hanem bármikor átállíthatjuk egy
példány adatát (mutáció).

15

Az alábbi példa egy ilyen utólagos módosításra / mutációra.

/**/var watson = new Dog { Name = "Watson" };
watson.Name = "Sherlock";

Ez így hiba nélkül lefordul.

Kizárólag az inicializációra korlátozhatjuk a setter meghívását az init-only setterrel.

/**/public class Dog
/**/{
 public string Name { get; init; }
 //...
/**/}

Ezután az inicializációs sor továbbra is lefordul, de a névátírásos már nem. Ez utóbbi sort
kommentezzük ki.


Init-only settert az osztály konstruktorából is meg lehet hívni - hiszen az is
inicializáció.



Init-only settert több okból kifolyólag is használhatunk, például a típus
példányainak immutábilis kezelését akarjuk kikényszeríteni, vagy csak
inicializációra akarjuk korlátozni a propertyk beállítását, de nem akarunk ehhez
konstruktort írni.

Indexer operátor, nameof operátor, index inicializáló
A collection initializer analógiájára jött létre az index initializer nyelvi elem, ami a korábbihoz
hasonlóan sorban hív meg egy operátort, hogy már inicializált objektumot kapjunk vissza. A
különbség egyrészt a szintaxis, másrészt az ilyenkor meghívott metódus, ami az index operátor.


Saját típusainkban lehetőségünk van definiálni és felüldefiniálni operátorokat,
mint pl. +, -, indexelés, implicit cast, explicit cast, stb.

Tegyük fel, hogy egy kutyához bármilyen, üzleti logikában nem felhasznált információ kerülhet,
amire általános struktúrát szeretnénk. Vegyünk fel a Dog osztályba egy string-object szótárat,
amiben bármilyen további információt tárolhatunk! Ezen felül állítsuk be a Dog indexerét, hogy az a
Metadata indexelését végezze:

/**/public class Dog
/**/{
 //...
 public Dictionary<string, object> Metadata { get; } = new (); ①

 public object this[string key]

16

 {
 get { return Metadata[key]; }
 set { Metadata[key] = value; }
 }
/**/}

① A new operátor utáni konstruktorhívás sok esetben elhagyható, ha a bal oldal alapján amúgy is
tudható a típus.


Az újabb projektsablonok sokkal kevesebb névtérdeklarációt (using) generálnak
alapból. Ha kell, vegyük fel a szükségeseket a fel nem oldott néven állva a
gyorsművelet (villanykörte) eszközzel (CTRL  +  .)

Az objektum inicializáló és az index inicializáló vegyíthető, így az alábbi módon tudunk felvenni
további tulajdonságokat a kutyákhoz a legfelső szintű kódba:

 var pimpedli = new Dog
 {
 Name = "Pimpedli",
 DateOfBirth = new DateTime(2006, 06, 10),
 ["Chip azonosító"] = "123125AJ"
 };
/**/ Console.WriteLine(banan);

Mivel indexelni általában kollekciókat szokás (tömb, lista, szótár), ezért ezekben az esetekben igen
jó eszköz lehet az index inicializáló. Vegyünk fel egy új kutyaszótárt a kutyák kitenyésztése után:

var dogs = new Dictionary<string, Dog>
{
 ["banan"] = banan,
 ["watson"] = watson,
 ["unnamed"] = unnamed,
 ["unknown"] = unknown,
 ["pimpedli"] = pimpedli
};

foreach (var dog in dogs)
 Console.WriteLine($"{dog.Key} - {dog.Value}");

Próbáljuk ki - minden név-kutya párt ki kell írnia a szótárból.

Elsőre jó ötletnek tűnhet kiváltani a szövegliterálokat a Name property használatával.

var dogs = new Dictionary<string, Dog>
{
 [banan.Name] = banan,
 [watson.Name] = watson,

17

 [unnamed.Name] = unnamed,
 [unknown.Name] = unknown,
 [pimpedli.Name] = pimpedli
};
//ArgumentNullException!

Ez azonban kivételt okoz, amikor a kutya neve nincs kitöltve, azaz null értékű. Esetünkben elég
lenne az adott változó neve szövegként. Erre jó a nameof operátor.

var dogs = new Dictionary<string, Dog>
{
 [nameof(banan)] = banan,
 [nameof(watson)] = watson,
 [nameof(unnamed)] = unnamed,
 [nameof(unknown)] = unknown,
 [nameof(pimpedli)] = pimpedli
};

Ez a változat már nem fog kivételt okozni.

A nameof operátor sokfajta nyelvi elemet támogat, vissza tudja adni egy változó, egy típus, egy
property vagy egy függvény nevét is.

A szótár feltöltését megírhatjuk kollekció inicializációval is. Ehhez kihasználjuk, hogy a szótár típus
rendelkezik egy Add metódussal, amelyik egyszerűen egy kulcsot és egy hozzátartozó értéket vár:

var dogs = new Dictionary<string, Dog>
{
 { nameof(banan), banan },
 { nameof(watson), watson },
 { nameof(unnamed), unnamed },
 { nameof(unknown), unknown },
 { nameof(pimpedli), pimpedli }
};

Using static
Ha egy osztály statikus tagjait vagy egy statikus osztályt szeretnénk használni, lehetőségünk van a
using static kulcsszavakkal az osztályt bevonni a névfeloldási logikába. Ha a Console osztályt
referáljuk ilyen módon, lehetőségünk van a rajta levő metódusok meghívására az aktuális
kontextusunkban anélkül, hogy az osztály nevét kiírnánk:

/**/using System;
 using static System.Console;
 //..
/**/foreach (var dog in dogs)
 /*Console.*/WriteLine($"{dog.Key} - {dog.Value}");

18

 /*Console.*/WriteLine(banan);
 /*Console.*/ReadLine();


Az általános névfeloldási szabály továbbra is él: ha egyértelműen feloldható a
hivatkozás, akkor nem szükséges kitenni a megkülönböztető előtagot (itt: osztály),
különben igen.

Nullozható típusok
Természetesen a referenciatípusok mind olyan típusok, melyek vehetnek fel null értéket, viszont
esetenként jó volna, ha a null értéket egyébként felvenni nem képes típusok is lehetének ilyen
értékűek, ezzel pl. jelezvén, hogy egy érték be van-e állítva vagy sem. Pl. egy szám esetén a 0 egy
konkrét, helyes érték lehet a domain modellünkben, a null viszont azt jelenthetné, hogy nem vett
fel értéket.

Vizsgáljuk meg, hogy a konzolra történő kiíráskor miért lesz az aktuális év Watson kutya életkora!
Valamelyik Console.WriteLine sorhoz vegyünk fel egy töréspontot (F9), majd debuggolás közben a

Locals ablakban (debuggolás közben Debug › Windows › Locals) figyeljük meg az egyes példányok
adatait. Watsont kinyitva láthatjuk, hogy a turpisság abból fakad, hogy a DateOfBirth adat típusa, a
DateTime nem referenciatípus, és alapértelmezés szerinti értéket veszi fel, ami 0001. 01. 01. 00:00:00
- hiszen nem állítottunk be mást.

Ismeretlen születési dátumú, korú egyedek helyes tárolásához az Age tulajdonság típusát
változtassuk int?-re! Az int? szintaktikai édesítőszere a Nullable<int>-nek, egy olyan struktúrának,
ami egy int értéket tárol, és tárolja, hogy az be van-e állítva vagy sem. A Nullable<int> szignatúráit
megmutathatjuk, hogyha a kurzort a típusra helyezve F12 -t nyomunk.

Módosítsuk a Dog Age és DateOfBirth tulajdonságait is, hogy tudjuk, be vannak-e állítva az értékeik:

public class Dog
{
 //...

 public DateTime? DateOfBirth { get; set; }

 private int? AgeInDays => (-DateOfBirth?.Subtract(DateTime.Now))?.Days;

 public int? Age => AgeInDays / 365;

 public int? AgeInDogYears => AgeInDays * 7 / 365;

 //...
}


Örvendezzünk, hogy az alap aritmetikai operátorok pont úgy működnek, ahogy
szeretnénk (null bemenetre null eredmény), nem kellett semmilyen trükk.

19

Az AgeInDays akkor ad vissza null értéket, ha a DateOfBirth maga is null volt. Tehát ha nincs
megadva születési dátumunk, nem tudunk életkort sem számítani. Ennek kifejezésére
használhatjuk a ?. (Elvis, magyarban Kozsó - null conditional operator) operátort: a kiértékelendő
érték jobb oldalát adja vissza, ha a bal oldal nem null, különben null-t. A kifejezést meg kellett
változtatnunk, hogy a DateOfBirth-ből vonjuk ki a jelenlegi dátumot és ezt negáljuk, ugyanis a null
vizsgálandó érték a bináris operátor bal oldalán kell, hogy elhelyezkedjen.



Az Elvis operátor nevének eredetére több magyarázatot is lehet találni, a források
annyiban nagyrészt megegyeznek, hogy a kérdőjel tekeredő része az énekes
jellegzetes bodorodó hajviseletére emlékeztet, a pontok pedig a szemeket jelölik,
így végülis a ?. egy Elvis emotikonként fogható fel. Ezen logika mentén adódik a
magyar megfelelő, a Kozsó operátor, hiszen a szem körül tekergőző legikonikusabb
hajtincs a magyar zenei kultúrában Kozsó nevéhez köthető.

Ha így futtatjuk az alkalmazást, az AgeInDays és a származtatott tulajdonságok értéke null (vagy
kiírva üres) lesz, ha a születési dátum nincs megadva.

Rekord típus
A rekord típusok speciális típusok, melyek:

• egyenlőségvizsgálat során érték típusokra jellemző logikát követnek, azaz két példány akkor
egyenlő, ha adataik egyenlőek

• könnyen immutábilissá tehetők, könnyen kezelhetők immutábilis típusként

A Dog típus ezzel szemben jelenleg:

• nem immutábilis, hiszen a születési dátum bármikor módosítható (sima setter)

• egyenlőségvizsgálat során a normál referencia szerinti összehasonlítást követ

Az automatikusan generálódó egyedi azonosítót iktassuk ki a Dog osztályból, hogy az adat alapú
összehasonlítást könnyebben tesztelhessük.

public Guid Id { get; } = Guid/*.NewGuid()*/.Empty;

Vegyünk fel egy logikailag megegyező példányt.

/**/var watson = new Dog { Name = "Watson" };
 var watson2 = new Dog { Name = watson.Name };

Ismét álljunk meg debug során valamelyik WriteLine soron. A Locals ablakban nézzük meg, hogy a

két példány minden adata megegyezik. A Watch ablakban (debuggolás közben Debug › Windows ›
Watch › Watch 1) értékeljük ki a watson == watson2 kifejezést. Láthatjuk, hogy ez az
egyenlőségvizsgálat hamist ad, ami technikailag helyes, mert két különböző memóriaterületről van
szó, a referenciák nem ugyanoda mutatnak a memóriában. Sok esetben azonban nem ezt
szeretnénk, hanem például a dupla rögzítés elkerülésére az adatok alapján történő

20

https://hu.wikipedia.org/wiki/Kozso

összehasonlítást, ami érték típusoknál van. Referencia típusoknál klasszikusan ezt a GetHashCode,
Equals függvények felüldefiniálásával értük el (vagy az IComparable<T>, IComparer<T> interfészre
épülő logikákkal). Egy újabb lehetőség a rekord típus használata.

Pozíció alapú megadás

Vegyünk fel a Dog típus adatainak megfelelő rekord típust, mindössze egy kifejezésként. A Dog típus
alá:

public record class DogRec(
 Guid Id,
 string Name,
 DateTime? DateOfBirth=null,
 Dictionary<string, object> Metadata=null
);

 A record class jelölőből a class elhagyható.

Ez az ún. pozíció alapú megadási forma, ami a leginkább rövidített megadási formája a rekord
típusnak. Ebből a rövid formából, mindenfajta extra kód írása nélkül a fordító számos dolgot
generál:

• a zárójelen belüli felsorolásból konstruktort és dekonstruktort

• a zárójelen belüli felsorolás alapján propertyket get és init tagfüggvényekkel

• alapértelmezett logikát az érték szerinti összehasonlításhoz

• klónozó és másoló konstruktor logikákat

• alapértelmezett formázott kiírást, szöveges reprezentációt (ToString implementációt)

Így egy könnyen kezelhető, immutábilis, az összehasonlításokban érték típusként viselkedő
adatosztályunk lesz.



Az Id-nek nem tudjuk beállítani ebben a formában az alapértelmezett Guid.Empty
értéket vagy a Metadata-nak az új példányt, mert az egyenlőségjeles kifejezésekből
alapértelmezett konstruktorparaméter-értékek lesznek, amik csak statikus,
fordítási időben kiértékelhető kifejezések lehetnek.

Vegyünk fel a többi Watson példány mellé két újabbat, de itt már az új rekord típusunkat
használjuk.

var watson3 = new DogRec(Guid.Empty, "Watson");
var watson4 = new DogRec(Guid.Empty, "Watson");

A fentebbi Watch ablakos módszerrel ellenőrizzük a watson3 == watson4 kifejezés értékét. Ez már
igaz érték lesz az adatmező alapú összehasonlítási logika miatt.

21

Próbáljuk ki ugyanezt a kiértékelést az alábbi változattal:

/**/var watson3 = new DogRec(Guid.Empty, "Watson");
/**/var watson4 = new DogRec(Guid.Empty, "Watson"
 /*új paraméter ->*/, DateTime.Now.AddYears(-1));

Ez hamis értéket ad, az egyenlőségnek minden mezőre teljesülnie kell, nem csak a mindkettőben
kitöltöttekre.

A DogRec típus alapvetően immutábilis, a példányainak alapadatai inicializálás után nem
módosíthatók. Próbáljuk felülírni a nevet.

/**/var watson3 = new DogRec(Guid.Empty, "Watson");
/**/var watson4 = new DogRec(Guid.Empty, "Watson", DateTime.Now.AddYears(-1));
 watson4.Name = watson3.Name + "_2"; //<= nem fordul

Nem fog lefordulni, mert minden property init-only típusú. A sor jobboldala egyébként lefordulna,
tehát a lekérdezés (getter hívás) működne.

Ha immutábilis típusokkal dolgozunk, akkor mutáció helyett új példányt hozunk létre
megváltoztatott adatokkal. Alapvetően ezt az OO nyelvekben másoló konstruktorral oldjuk meg. A
rekord típusnál ennél is továbbmenve másoló kifejezést használhatunk.

/**/var watson4 = new DogRec(Guid.Empty, "Watson", DateTime.Now.AddYears(-1));
 var watson5 = watson4 with { Name = "Sherlock" };
 WriteLine(watson4);
 WriteLine(watson5);

Futtatáskor a konzolban gyönyörködjünk a rekord típusok alapértelmezetten is olvasható szöveges
kiírásában.

A másoló kifejezésben a with operátor előtt megadjuk, melyik példányt klónoznánk, majd az
inicializáció részeként milyen értékeket állítanánk át, ehhez az objektum inicializációs szintaxist
használhatjuk. Fontos eszünkbe vésni, hogy a másolás eredményeként új példány jön létre, új
memóriaterület foglalódik le. Gondoljunk erre akkor, amikor egy ciklusban használjuk ezt a
módszert sok egymást követő módosításra.



Mire jó a rekord típus, az immutabilitás? Az immutábilis típussokkal való
hatékony és eredményes munka másfajta, az imperatív nyelvekhez szokott
fejlesztők számára szokatlan módszereket kíván. Vannak területek, ahol ez a
befektetés megtérül, ilyen például a többszálú környezet. A legtöbb szálkezeléssel
kapcsolatos probléma ugyanis a szálak által közösen használt adatstruktúrák
mutációjára vezethető vissza (ún. race condition, versenyhelyzet). Nincs mutáció -
nincs probléma. (No mutation - no cry)

22

Kitérő: a szótár visszavág

A rekord típus által biztosított kellemes tulajdonságok csak akkor érvényesek, ha nem keverjük
hagyományos referencia típusokkal.

A szokásos módszerrel ellenőrizzük le, hogy a watson5 == watson6 kifejezés igaz-e. Igen, hiszen
minden kitöltött adatuk egyezik.

/**/var watson4 = new DogRec(Guid.Empty, "Watson", DateTime.Now.AddYears(-1));
/**/var watson5 = watson4 with { Name = "Sherlock" };
 var watson6 = watson4 with { Name = "Sherlock" };
/**/WriteLine(watson4);
/**/WriteLine(watson5);
 WriteLine(watson6);

Vigyünk be egy ártatlan inicializációt a Metadata propertyre.

/**/var watson4 = new DogRec(Guid.Empty, "Watson", DateTime.Now.AddYears(-1));
/**/var watson5 = watson4 with { Name = "Sherlock"
 , Metadata = new Dictionary<string, object>() };
/**/var watson6 = watson4 with { Name = "Sherlock"
 , Metadata= new Dictionary<string, object>() };
/**/WriteLine(watson4);
/**/WriteLine(watson5);
/**/WriteLine(watson6);

Ezzel eléggé illogikus módon hamisra változik a watson5 == watson6 kifejezés. Az oka az, hogy a
Metadata szótár egy klasszikus referencia típus, az összehasonlításnál a klasszikus memóriacím-
összehasonlítás történik, viszont az a két új szótár példány esetében eltérő lesz. A formázott
szöveges kiírásba is belerondít a szótár, mert ott is a szótár típus alapértelmezett szöveges
reprezentációja jut érvényre, ami a típus neve.

Klónozzunk tovább, aztán próbáljunk mutációt végrehajtani a Metadata szótáron.

/**/var watson6 = watson4 with { Name = "Sherlock"
/**/ , Metadata = new Dictionary<string, object>() };
var watson7 = watson6 with { Name = "Watson" };
watson7.Metadata.Add("Chip azonosító", "12345QQ");
/**/WriteLine(watson4);

Ez lefordul, pedig ez mutáció. A Locals ablakban figyeljük meg a watson6 és watson7 szótárait:
mindkettőbe bekerült a chip azonosító. Ez az ún. shallow copy jelenség, amikor nem a szótár
memóriaterülete klónozódik, csak a rá mutató referencia, ami azt eredményezi, hogy a két
példánynak közös szótára lesz.

Összességében az adatstruktúránkban megjelenő klasszikus referencia típus elrontja:

23

• az immutabilitást

• az érték szerinti összehasonlítást

• a formázott szöveges megjelenést

• a klónozást


Immutábilis környezetben törekedjünk arra, hogy a teljes adatstruktúránk
támogassa az immutábilis kezelést.

Normál megadás

Ha nincs szükségünk a kikényszerített immutabilitásra, akkor használhatjuk a rekord normál
megadását. Fogjuk a Dog osztályt, másoljuk le a kódját, adjunk neki más nevet és class helyett record
jelölőt. A Dog osztály fölé:

public record DogRecExt
{
 public string Name { get; init; }
 public Guid Id { get; } = Guid.Empty;
 public DateTime? DateOfBirth { get; set; }
 public Dictionary<string, object> Metadata { get; } = new();

 private int? AgeInDays => (-DateOfBirth?.Subtract(DateTime.Now))?.Days;
 public int? Age => AgeInDays / 365;
 public int? AgeInDogYears => AgeInDays * 7 / 365;

 public object this[string key]
 {
 get { return Metadata[key]; }
 set { Metadata[key] = value; }
 }
}

 A ToString implementációját elhagytuk az előző szakaszban említettek miatt.

A legfelső szintű kódba:

/**/WriteLine(watson6);
 var watson8 = new DogRecExt { Name = "Watson" };
 watson8.DateOfBirth = DateTime.Now.AddYears(-15);
 var watson9 = watson8 with { };
 WriteLine(watson8);
 WriteLine(watson9);

Ellenőrizzük le a rekord tulajdonságokat:

• A konzol kimeneten a formázást, továbbá a mutáció működését, azaz a watson8 születési dátuma

24

a beállított lesz. Ez nem csoda, hiszen a property deklarációban engedtük a mutációt.

• A konzol kimeneten megfigyelt példányadatokon a klónozó kifejezés működését. Semmi
különös, ugyanúgy működik, mint a tömör formánál.

• A Watch ablakban watson8 == watson9 egyenlőséget. Ez igaz, mert minden adattagjuk egyezik.



A rekordoknak további válfajai vannak, ugyanis struktúra is lehet rekord, ilyenkor
a record struct kulcsszó párt használjuk a típus deklarációjánál. Sőt, a readonly
record struct egy immutábilis record struct. Ezen válfajok nyilván
különbözőképpen viselkednek, mely viselkedéseket itt most nem részletezzük, de a
dokumentációban megtalálhatók.

25

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/record

LINQ

Előkészítés
A gyakorlat kezdetén töltsük le a [kiinduló projektet](https://github.com/bmeaut/dotnet/archive/
refs/heads/master.zip) zip-ként. Miután kitömörítettük a fájlokat, töltsük be Visual Studio-ba a
HelloLinq mappából a HelloLinq.sln solution fájlt.

Megnyitás után tekintsük át a kiinduló projektben levő fájlokat:

• Program.cs: a legfelső szintű kódot tartalmazó osztály. Található benne egy Dogs változó, ami a
Dog osztály statikus Repository tulajdonságába hív át.

• Dog.cs: a korábbi gyakorlatokon használt adatmodell (apróbb módosításokkal). Bekerült egy
Siblings tulajdonság, a ToString pedig kiírja a kutyához tartozó testvérek számát is (ehhez a
TrimPad bővítő metódust használja). A statikus Repository tulajdonság mögött egy lustán
inicializált Lazy<T> RepositoryHolder található, ami egy megfelelően formázott bemeneti CSV
fájlból elkészíti számunkra az adatmodellt, amivel a későbbiekben dolgozunk. Ennek
implementációját elég a gyakorlat végén megnézni. Az Import és Export függvények a kutyák
sorosítását végzik el mindkét irányban.

• Extensions/StringExtensions.cs: ez az osztály tartalmaz egy segédmetódust a formázott
kiíráshoz. A Dog ToString metódusa használja fel. A bővítő metódusos részben lesz jelentősége.

• dogs.csv: egy pontosvesszővel tagolt adathalmaz, amelyben 100 darab előre felvett kutya adata
található. Innen puskázhatunk, ha ellenőrizni akarjuk, hogy helyesek-e a programunk
eredményei.

A kiinduló projektben a globális implicit névtérhivatkozások ki vannak kapcsolva. A csproj fájlban

megnézhetjük (jobb klikk a projekten › Edit Project File):

<ImplicitUsings>disable</ImplicitUsings>

Lambda kifejezések, delegátok
Gyakori feladat, hogy objektumok kollekciójával kell dolgoznunk. Képesek vagyunk olyan jellegű
segédfüggvényeket készíteni, amik például egy kollekcióban kikeresik az összes olyan elemet,
amely egy megadott feltételnek eleget tesz.

A Program.cs fájlban látható ennek a kezdeti naiv változata, szemrevételezzük:

static List<Dog> ListDogsByNamePrefix(IEnumerable<Dog> dogs,
 string prefix)
{
 var result = new List<Dog>();
 foreach (var dog in dogs)
 {
 if (dog.Name.StartsWith(prefix,

26

https://github.com/bmeaut/dotnet/archive/refs/heads/master.zip
https://github.com/bmeaut/dotnet/archive/refs/heads/master.zip

 StringComparison.OrdinalIgnoreCase))
 result.Add(dog);
 }
 return result;
}

Próbáljuk ki! A kód működik, viszont nem újrahasznosítható. Ha bármi más alapján szeretnénk
keresni a kutyák között (pl. a neve tartalmaz-e egy adott szövegrészt), mindig egy új segédfüggvényt
kell készítenünk, ami rontja a kód újrahasznosíthatóságát.

Oldjuk meg úgy, hogy az általános problémát is megoldjuk! Ehhez az szükséges, hogy a kollekciónk
egyes elemein kiértékelhessünk egy, a hívó által megadott predikátumot. Készítsük el az
általánosabb változatot, ehhez felhasználhatjuk a ListDogsByNamePrefix kódját.

static List<Dog> ListDogsByPredicate(IEnumerable<Dog> dogs,
 Predicate<Dog> predicate)
{
 var result = new List<Dog>();
 foreach (var dog in dogs)
 {
 if (predicate(dog))
 result.Add(dog);
 }
 return result;
}

A legfelső szintű kódban így hívhatjuk meg (felhasználhatjuk az eredeti ciklust):

 foreach(var dog in ListDogsByPredicate(Dogs,
 delegate (Dog d) {
 return d.Name.StartsWith(searchText,
 StringComparison.OrdinalIgnoreCase);
 })
)
/**/ Console.WriteLine(dog);

Egy egy bemenő paraméterű és egy logikai (bool) értéket visszadó függvényt definiálunk helyben
(inline) és ezt (illetve a referenciáját) adjuk át. Használjunk inkább lambda kifejezést, az jóval
rövidebben leírható - egyelőre csak nézzük meg, de ne integráljuk a kódba:

d => d.Name.StartsWith(searchText, StringComparison.OrdinalIgnoreCase);


Lambda kifejezéssel az egyetlen kifejezésből álló függvényeket adhatjuk meg
nagyon kompakt módon. A ⇒-tól balra elnevezzük a bemenő paramétereket,
jobbra pedig felhasznál(hat)juk. A return, {} és egyéb sallangokat elhagyhatjuk.

27

Vessük össze, hogy az első esetben explicit megadtuk, hogy a bemenő paraméterünk Dog, most
viszont nem. Ezt a fordító statikus kódanalízis alapján el tudja dönteni: a d változónk nem lehet
más, csak Dog (statikus) típusú, ezért csak így használhatjuk, viszont nem kell kiírnunk a típust.

A lambda kifejezések egy lehetséges módja a delegátok leírásának. A delegát kódot reprezentál,
viszont a kódot kezelhetjük adatként is.

Próbáljuk meg a delegátunkat kivenni egy implicit típusú változóba a ciklus előtt:

 var predicate = d => d.Name
 .StartsWith(searchText, StringComparison.OrdinalIgnoreCase);
// fordítási hiba!
/**/foreach (var dog in
/**/ ListDogsByPredicate(Dogs, predicate)) //<- predicate-ra írjuk át
/**/ Console.WriteLine(dog);

Fordítási hibát kapunk, lambda kifejezés típusa nem lehet implicit eldönthető az inicializációs
sorban: sem a bemenő paraméter pontos típusát nem tudjuk (Dog? Puppy?), sem a visszatérési
értéket (bool? object? void?). Tehát explicit meg kell adnunk a típust:

Predicate<Dog>
/**/predicate =
/**/ d => d.Name.StartsWith(searchText, StringComparison.OrdinalIgnoreCase);

Ezután fordul és fut is az alkalmazásunk.


Ehhez tudnunk kellett, hogy a Predicate<T> megfelelő szignatúrájú. Mutassuk meg
ezen típus dokumentációját vagy tegyük a kurzort a típusra és nyomjunk F12 -t.

Func<>, Action<>
Ismerkedjünk meg a Func és Action általános delegáttípusokkal. Ezzel a két generikus típussal
(pontosabban a változataikkal) gyakorlatilag az összes gyakorlatban előforduló
függvényszignatúrát le lehet fedni. Például a fenti szűrőlogikát is átírhatnánk erre:

Func<Dog, bool> dogFunc =
 d => d.Name.StartsWith(searchText, StringComparison.OrdinalIgnoreCase);

A dogFunc és a predicate kompatibilisnek tűnhetnek (elvégre a jobboldaluk ugyanaz), ám ha
lecserélnénk pl. a ListDogsByPredicate(Dogs, predicate) hívásban a predicate-et dogFunc-ra, a kód
nem fordulna, ugyanis a két delegáttípus nem kompatibilis.

Az Action<> hasonló elven működik, visszatérési érték nélküli függvényekre.

INFO: Ha minden esetre jók, miért vannak használatban Action<> és Func<>-on kívül más
delegáttípusok? Egyrészt történelmi okok miatt. Később jelentek meg, mint a specifikusak, például a

28

Predicate<T>. Másrészt a specifikusabbak a nevükkel kifejezőbbek lehetnek.



A fenti predikátumváltozataink mind nem tiszta függvények (pure function),
ugyanis olyan adattól is függ a visszatérési értéke, ami nem szerepel a
paraméterlistáján - ez esetünkben a searchText változó. A kódunk azért működik,
mert a delegát megadásakor a searchText aktuális értékét elkapjuk (capture),
belerakjuk a függvénylogikába.

Próbáljuk a dogFunc-ot var-ként deklarálni.

var dogFunc =
 d => d.Name.StartsWith(searchText, StringComparison.OrdinalIgnoreCase);
//Fordítási hiba!

A fordító nem tudja meghatározni a d paraméter típusát, ezért kapjuk a fordítási hibát. Adjuk meg
explicit a paraméter típusát.

var dogFunc =
 (Dog d) => d.Name.StartsWith(searchText, StringComparison.OrdinalIgnoreCase);

Debugger-rel ellenőrizhetjük, hogy a dogFunc valódi típusa Func<Dog, bool> lesz.

IEnumerable<T> bővítő metódusok
Vigyük tovább az általánosítást. Írjunk olyan logikákat, mely nem csak kutyák listájára, hanem
bármilyen felsorolható (enumerálható) kollekcióra működik. Írjunk IEnumerable<T> típuson működő
segédfüggvényeket.

Hozzunk létre egy EnumerableExtensions (I betű nélkül, az ugyanis interfészre utal) nevű fájlt az
Extensions mappában! Elsőként valósítsuk meg az összegző logikát.

namespace HelloLinq.Extensions.Enumerable;

public static class EnumerableExtensions
{
 public static int Sum<T> (IEnumerable<T> source,
 Func<T, int> sumSelector)
 {
 var result = 0;
 foreach (var elem in source)
 result += sumSelector(elem);
 return result;
 }
}

Hívjuk meg a legfelső szintű kódból.

29

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/lambda-expressions#capture-of-outer-variables-and-variable-scope-in-lambda-expressions

using HelloLinq.Extensions.Enumerable;

/**/IEnumerable<Dog> Dogs = Dog.Repository.Values;

foreach (var dog in Dogs)
 Console.WriteLine(dog);

Console.WriteLine("Életkorok összege: " +
 $"{EnumerableExtensions.Sum(Dogs, d => d.Age ?? 0)}");

/**/string searchText;

A segédfüggvények hátránya, hogy ismernünk kell a segédosztály nevét. Továbbá jobb lenne, ha a
kollekción közvetlenül hívhatnánk az összegző függvényt. Erre megoldás a bővítő metódus.

A bővítő metódusok:

• statikus osztályban definiálhatók

• statikus függvények

• első paramétere előtt this jelöli, hogy melyik típust bővítik

Az első paraméter elé tegyük be a this jelölőt.

/**/ public static int Sum<T> (this IEnumerable<T> source,
/**/ Func<T, int> sumSelector){/*...*/}

Most már használhatjuk azt a szintaxist, mintha a kollekciónak eleve lenne összegző függvénye:

/* Console.WriteLine("Életkorok összege: " +
 $"{EnumerableExtensions.Sum(Dogs, d => d.Age ?? 0)}");*/
Console.WriteLine($"Életkorok összege: {Dogs.Sum(d => d.Age ?? 0)}");



A bővítő metódusok semmilyen módon nem bontják meg a típusok egységbezárási
képességeit. A függvények implementációi a bővítendő típusok kívülről is elérhető
függvényeit, propertyjeit használhatják, privát adattagokhoz, függvényekhez nem
férnek hozzá.



A bővítő metódusok alkalmazásakor nagyon fontos, hogy bár a bővítő metódus
osztályának nevét nem írjuk ki, az osztály nevének feloldhatónak kell lennie, azaz
az osztály névterét using direktívával be kell hivatkoznunk. Egy próba erejéig
kommentezzük ki a using HelloLinq.Extensions.Enumerable; sort és ellenőrizzük,
hogy nem fordul a kódunk, a bővítő metódus nevét a fordító nem tudja feloldani.

Gyakorlásképpen írhatunk további gyakori adatfeldolgozási műveletekre függvényeket, mint
amilyen az átlagszámítás, szélsőérték-keresés.

30

/**/public static class EnumerableExtensions
/**/{
 //...
 public static double Average<T> (this IEnumerable<T> source,
 Func<T, int> sumSelector)
 {
 var result = 0.0; // Az osztás művelet miatt double
 var elements = 0;
 foreach (var elem in source)
 {
 elements++;
 result += sumSelector(elem);
 }
 return result/elements;
 }
 public static int Min<T> (this IEnumerable<T> source,
 Func<T, int> valueSelector)
 {
 int value = int.MaxValue;
 foreach (var elem in source)
 {
 var currentValue = valueSelector(elem);
 if (currentValue < value)
 value = currentValue;
 }
 return value;
 }
 public static int Max<T> (this IEnumerable<T> source,
 Func<T, int> valueSelector)
 => -source.Min(e => -valueSelector(e));
/**/}

Próbáljuk ki az új függvényeket. Mivel a Dogs típusa IEnumerable<Dog>, így a bővítő metódusok
bővítendő típusa illeszkedik rá.

/**/Console.WriteLine($"Életkorok összege: {Dogs.Sum(d => d.Age ?? 0)}");
 Console.WriteLine($"Átlagos életkor: {Dogs.Average(d => d.Age ?? 0)}");
 Console.WriteLine(
 $"Minimum-maximum életkor: " +
 $"{Dogs.Min(d => d.Age ?? 0)} | {Dogs.Max(d => d.Age ?? 0)}");


A StringExtensions osztályban egy lambdaként megvalósított bővítő metódust
láthatunk, ami egy szöveget adott hosszra (szélességre) egészít ki szóközökkel. A
függvényt a Dog ToString metódusa használja fel.

31

Gyakori lekérdező műveletek, yield return
Gyakran előfordul, hogy egy listát szűrni vagy projektálni szeretnénk. Írjunk saját generátort
ezekhez a műveletekhez is az EnumerableExtensions-be:

public static IEnumerable<T>
 Where<T> (this IEnumerable<T> source,
 Predicate<T> predicate)
{
 foreach (var elem in source)
 {
 if (predicate(elem))
 yield return elem;
 }
}
public static IEnumerable<TValue>
 Select<T, TValue>(this IEnumerable<T> source,
 Func<T, TValue> selector)
{
 foreach (var elem in source)
 {
 yield return selector(elem);
 }
}

Próbáljuk ki a legfelső szintű kód elején, válasszuk ki a 2010 előtt született kutyák nevét és korát egy
stringbe:

/**/IEnumerable<Dog> Dogs = Dog.Repository.Values;
 foreach (var text in Dogs
 .Where(d => d.DateOfBirth?.Year < 2010)
 .Select(d => $"{d.Name} ({d.Age})"))
 {
 Console.WriteLine(text);
 }



A yield return egy hasznos eszköz, ha IEnumerable-t kell produkálnunk
visszatérési értékként. Segítségével mindig csak akkor állítjuk elő a következő
elemet, amikor a hívó kéri. A működését debuggerrel is figyeljük meg: tegyünk
breakpointot a két yield return sorra, majd F10 -zel kövessük végig, ahogy a foreach
elkéri a Select-től a következő elemet, ami emiatt elkéri a Where-től, majd újraindul
a ciklus. A hívások állapotgépként működnek, a következő meghíváskor onnan
folytatódnak, ahonnan az előző yield return-nél kiléptünk.

Nem nagy meglepetés, hogy az általunk megírt Sum, Average (melyek egyedi visszatérésűek), Select
és Where (amik szekvenciális visszatérésűek, generátorok) metódusok mind a .NET keretrendszer
részét képezik (a System.Linq.Enumerable statikus osztályban definiált bővítő metódusok). A LINQ

32

https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable

 — Language INtegrated Query — ezeket a műveleteket teszi lehetővé IEnumerable interfészt
megvalósító objektumokon. A LINQ függvények bővítő metódusként lettek hozzáadva meglevő
funkcionalitáshoz (kollekciókhoz, lekérdezésekhez), sőt, külső library-k is adnak saját LINQ bővítő
metódusokat.

Cseréljük le a Program.cs-ben a using HelloLinq.Extensions.Enumerable hivatkozást using
System.Linq-re: az általunk megírt kód továbbra is ugyanazt az eredményt produkálja! Nézzük meg,
hogy hol vannak definiálva ezek a függvények a keretrendszeren belül: a kurzort tegyük a kódban
oda, ahol valamelyik korábban megírt függvényünket hívnánk, majd nyomjunk F12 -t. Próbáljuk ki,
hogy továbbra is az elvárt módon működik-e a programunk.



A névtércsere helyett bekapcsolhatjuk a globális implicit névtér funkciót, mert a
System.Linq névtér is egy implicit hivatkozott névtér. Ehhez a projektfájlban az
<ImplicitUsings>disable</ImplicitUsings> beállítást írjuk át enable-re, majd a using
HelloLinq -en kívül minden névtérhivatkozást töröljünk a Program.cs-ből.

Anonim típusok
Lekérdezéseknél gyakran használatosak az anonim típusok, amelyeket jellemzően lekérdezések
eredményének ideiglenes, típusos tárolására használunk. Az anonim típusokkal lehetőségünk van
inline definiálni olyan osztályokat, amelyek jellemzően csak dobozolásra és adattovábbításra
használtak. Vegyük az alábbi példákat a legfelső szintű kód elején:

var dolog1 = new { Name = "Alma", Weight = 100, Size = 10 };
var dolog2 = new { Name = "Körte", Weight = 90 };

Korábban már említettük a var kulcsszót, amellyel implicit típusú, lokális változók definiálhatók. Az
értékadás jobb oldalán definiálunk egy-egy anonim típust, amelynek felveszünk néhány
tulajdonságot. A tulajdonságok mind típusosak maradnak, a típusrendszerünk továbbra is sértetlen.
Az implicit statikus típusosság nem csak a var kulcsszóban jelenik meg tehát, hanem az egyes
tulajdonságok típusában is.

Az anonim típusok:

• csak referencia típusúak lehetnek (objektumok, nem pedig struktúrák),

• csak publikusan látható, csak olvasható tulajdonságokat tartalmazhatnak,

• eseményeket és metódusokat nem tartalmazhatnak (delegate példányokat tulajdonságban
viszont igen),

• szerelvényen belül láthatók (internal) és nem származhat belőlük másik típus (sealed)

• típusnevét nem ismerjük, így hivatkozni sem tudunk rá, csak a var-t tudjuk használni

• nem használhatók ott, ahol a var típus se használható, többek között nem adhatjuk át
függvénynek és nem lehet visszatérési érték sem

Ha az egeret a var kulcsszavak vagy egyes tulajdonságnevek fölé visszük, láthatjuk, hogy valóban
fordítási idejű típusokról van szó.

33


Figyeljük meg, hogy az IntelliSense is működik ezekre a típusokra, felkínálja a
típus property-jeit.

A fordító újra is hasznosítja az egyes típusokat:

var dolgok = new { Name = "Gyümölcsök", Contents = new[] { dolog1, dolog2 } };

A Contents tulajdonság típusa a fenti anonim objektumaink tömbje, ezért nem is adhatnánk meg
másképpen (nem tudjuk a nevét, amivel hivatkozhatunk rá). A fordító most panaszkodik, ugyanis a
két dolog típusa nem implicit következtethető. Ha felvesszük a Size tulajdonságot a dolog2
definíciójába, máris fordul.

var dolog2 = new { Name = "Körte", Weight = 90, Size = 12 };


Ha végeztünk az anonim típusokkal való ismerkedéssel, az ezekkel kapcsolatos
kódsorokat kikommentezhetjük.

LINQ szintaxisok
Az előző részben ismertetett jellegű lekérdezések nagyban hasonlítanak azokhoz, amiket adatbázis-
lekérdezésekben alkalmazunk. A különbség itt az, hogy imperatív szintaxist használunk, szemben
pl. az SQL-lel, ami deklaratívat. Ezért is van jelen a C# nyelvben az ún. query syntax, amely jóval
hasonlatosabb az SQL szintaxisához, így az adatbázisokban jártas fejlesztők is könnyebben
írhatnak lekérdezéseket. Ugyanakkor nem minden lekérdezést tudunk query syntax-szal leírni.



Ennek oka, hogy az operátorok bevezetése egy nyelvben elég drága - le kell péládul
foglalni az operátor nevét, amit utána korlátozottan lehet csak használni másra.
Ezért sem csinálták meg minden LINQ függvénynek az operátor párját, csak az
SQL-ben gyakrabban használatosabbaknak.

Az előzőhöz hasonló lekérdezést megírhatunk az alábbi módon query syntax használatával:

using HelloLinq.Extensions;
//...

/**/IEnumerable<Dog> Dogs = Dog.Repository.Values;
 var query = from d in Dogs
 where d.DateOfBirth?.Year < 2010
 select new
 {
 Dog = d,
 AverageSiblingAge = d.Siblings.Average(s => s.Age ?? 0)
 };
 foreach (var meta in query)
 {

34

 Console.WriteLine(
 $"{meta.Dog.Name} - {meta.AverageSiblingAge}");
 }

A query szintaxis végül a korábban is használt, ún. fluent szintaxissá fordul. Ennek igazolására
nézzük meg F12 -vel, hogy hol vannak definiálva az újonnan megismert operátorok (select, where). A
két szintaxist szokás ötvözni is, jellemzően akkor, ha query szintaxisban írjuk a lekérdezést, és a
hiányzó funkcionalitást fluent szintaxissal pótoljuk.


A fluent szintaxist olyan kialakítású API-knál alkalmazhatjuk, ahol a függvények a
tartalmazó típust várják (egyik) bemenetként és azonos (vagy leszármazott) típust
adnak vissza. A LINQ-nél ez a típus az IEnumerable<>.

Ezen az órán memóriabeli adatforrásokkal dolgoztunk (konkrétan a Dogs nevű Dictionary<,> típusú
változóval), a LINQ operátorok közül a memóriabeli listákon dolgozókat használtuk, melyeket az
IEnumerable<> interfészre biggyesztettek rá bővítő metódusként. Ezt a LINQ API-t teljes nevén LINQ-
to-Objectsnek hívják, de gyakran csak LINQ-ként hivatkozzák.

Kitekintő: Expression<>, LINQ providerek
Vegyük az alábbi nagyon egyszerű delegate-et és ennek Expression<>-ös párját.

Func<int, int> f = x => x + 1;
Expression<Func<int, int>> e = x => x + 1;

Nézzük meg debuggolás közben a Watch ablakban a fenti két változót. Az f egy delegate, lefordított
kódra mutató referencia, az Expression a jobb oldali kifejezésből épített (fa struktúrájú) adat.

A fát kóddá fordíthatjuk a Compile metódus segítségével, mely a lefordított függvény referenciáját
(delegát példány) adja vissza, amit a függvényhívás szintaxissal hívhatunk meg. Ebből áll össze az
alábbi fura kinézetű kifejezés:

Console.WriteLine(e.Compile()(5));

Bár az Expression<> emiatt okosabb választásnak tűnik, ám a LINQ-to-Objects alapinterfészének
(ami a lekérdezőfüggvényeket biztosítja) függvényei Func<> / Action<> delegátokat várnak. Ami nem
csoda, hiszen memóriabeli listákat általában sima programkóddal dolgozunk fel, nincs értelme
felépíteni kifejezésfát csak azért, hogy utána egyből kóddá fordítsuk. Emellett más, memóriabeli
adatokon dolgozó LINQ technológia is létezik, pl. LINQ-to-XML saját API-val (nem IEnumerable<>
alaptípussal).

A nem memóriabeli adatokon, hanem például külső adatbázisból dolgozó LINQ provider-ek viszont
IQueryable<>-t valósítanak meg. Az IQueryable<> az IEnumerable<>-ból származik, így neki is vannak
Func<> / Action<>-ös függvényei, de emellett Expression<>-ösek is. Ez utóbbiak teszik lehetővé, hogy
ne csak .NET kódot generáljanak a lambda kifejezésekből, hanem helyette pl. SQL kifejezést - hiszen
egy relációs adatbázis adatfeldolgozó nyelve nem .NET, hanem valamilyen SQL dialektus.

35

A LINQ providerek általános működése

Bemenetük: query függvényeknek (IQ<> vagy IE<> függvényei vagy pl. XDocument) paraméterül adott
lambdák (Func<> vagy Expression<>)

Kimenetük: az adatforrásnak megfelelő nyelvű, a query-t végrehajtó kód (.NET kód vagy SQL).

LINQ-to-Objects esetén nincs valódi LINQ provider (a provider az IQueryable.Provider-en keresztül
érhető el, de a List<> nem IQueryable!), hiszen nincs feladata: kódot kap bemenetül, ugyanazt
kellene kimenetül adnia. A LINQ-to-XML is hasonló elven működik.

Valódi LINQ providert valósít meg például az Entity Framework, de ezt a technológiát később
tárgyaljuk.

36

C# alapok IV.
Ezen a gyakorlaton több különféle nyelvi konstrukciót tekintünk át, vegyesfelvágott jelleggel. Az
egyes fő témaköröket külön projektként dolgozzuk ki. A projekteket hozzáadhatjuk az elsőként

létrehozott projekt solutionjéhez (jobbklikk a solution-ön › Add › New project). Hozzáadás után

ne felejtsük el átállítani a futtatandó projektet: jobbklikk a projekten › Set as Startup Project.

Bejárási problémák
Enumerátorok használata esetén két alapvető problémába ütközünk: az egyik a mögöttes kollekció
módosulása bejárás során, a másik pedig a késleltetett kiértékelésből adódó mellékhatások
kezelése.

Kollekció módosulása bejárása során

Szűrjünk le egy számokat tartalmazó kollekciót csak azokra az elemekre, amik megfelelnek egy
feltételnek, és ezeket távolítsuk el a kollekcióból!

var numbers = Enumerable.Range(1, 8).ToList();
foreach (var p in numbers)
{
 if (p % 2 == 0)
 {
 numbers.Remove(p);
 }
}
numbers.ForEach(Console.WriteLine);

Futtatáskor kivételt kapunk. Mi a probléma? A kollekciót bejárás közben szerettük volna
módosítani, viszont ez könnyen nem várt működést (túlcímzést, nemdeterminisztikus bejárást)
tenne lehetővé, ezért kivételt kapunk. Oldjuk meg a problémát: nem módosíthatjuk a forrás
objektumot bejárás közben, tehát ne azt a kollekciót járjuk be, másoljuk le!

/**/foreach (var p in numbers.ToList()) // a ToList bekerült
/**/{/*...*/}

Ez megoldja a problémát, sikerül eltávolítani az elemeket a kollekcióból. De miért? A ToList
IEnumerable bővítő, tehát bejárhatja a kollekciót, ezután pedig egy másik List<> objektumban
tárolja az elemeket. Így tehát két listánk lesz (a numbers és a numbers.ToList visszatérési értéke),
amik kezdetben egymás klónjai, menet közben az egyikből veszünk ki, a másikon pedig iterálunk.


Bár a fenti az általános szabály, bizonyos kollekciók bizonyos módosító műveletei
mégsem dobnak kivételt, ilyen például a Dictionary<,> Remove és Clear műveletei.

37

Azonnali és késleltetett kiértékelés

Amennyiben egy metódus generátor (IEnumerable vagy IEnumerable<> visszatérési értékű), az egyes
elemeken történő iteráció a generátorok egymásba ágyazását jelenti, azaz az egyes generátorokban
a yield return által visszaadott értéket fogja az enumerátor MoveNext metódusa visszaadni. Amíg az
IEnumerable-re van referenciánk, és nem járjuk azt közvetlenül be, addig késleltetett kiértékelésről
beszélünk.

Az eddigiek alá:

var i = 0;
foreach (var n in numbers
 .Where(p => p > 2)
 .Select(p => new { p, x = ++i }))
{
 Console.WriteLine($"{n} - {i}");
}

Console.WriteLine();

i = 0;
foreach (var n in numbers
 .Where(p => p > 2)
 .Select(p => new { p, x = ++i })
 .ToList())
{
 Console.WriteLine($"{n} - {i}");
}

A ToList hívásunk először bejárja az iterátort és visszaad egy listát, amelybe összegyűjti az
IEnumerable elemeit. Ezért az i változónk a második esetben nem együtt inkrementálódik a
bejárással, mert az kétszer történik meg. Az első bejáráskor (a ToList hívásakor) inkrementálódik
az i értéke, másodjára pedig már csak bejárjuk a kapott listát. Eddigre az i értéke már meg van
növelve.

Ezzel a megközelítéssel futásidőben is állíthatunk össze egy időben változó lekérdezést, amit majd
egyszer, a későbbiekben fogunk bejárni (pl. sorosításkor).

Aszinkron működés
Töltsünk le egy HTML oldalt, és ezen a problémán keresztül bemutatjuk az aszinkron programozási
modellt. A HttpClient működésének a részletesebb ismertetése most nem téma, csak a
legalapvetőbb funkciókat fogjuk használni.

A fő gond, hogy a hosszan futó műveletek blokkolhatják a fő/UI/aktuális szál futását, mindez kliens
alkalmazások esetében úgy jelentkezik, hogy nem lesz az alkalmazásunk reszponzív a felhasználói
bemenetekre; szerveralkalmazások esetében pedig az adott kérést kiszolgáló szál feleslegesen
blokkolódik, amikor esetleg mással is tudna foglalkozni.

38

Ötlet: a hosszan tartó műveleteket végezzük aszinkron módon, és ha az befejeződött az
eredményről valamilyen módon értesüljünk. A keretrendszer többféle mintát kínál erre:
Asynchronous Programming Model (APM), Event-based Asynchronous Pattern (EAP), Task-based
Asynchronous Pattern (TAP). Mi most a legutóbbival foglalkozunk csak, a többi jórészt elavultnak
számít ma már.

A TAP-ra már C# nyelvi támogatást is kapunk az async/await kulcsszavakon keresztül. Vegyünk fel
egy új metódust és hívjuk meg a legfelső szintű kódban. A megírt metódus írása során hivatkozzuk
be a System.Net.Http névteret. A kód semmi mást nem csinál, csak elindít aszinkron módon egy
HTTP GET kérést a megadott URL-re, illetve a válasz tartalmát is aszinkron módon kiolvassa és egy
részét kiírja a konzolra.

LoadWebPageAsync();
Console.WriteLine("Ez a vége");
Console.ReadKey();

static async void LoadWebPageAsync()
{
 using (var client = new HttpClient())
 {
 var response = await client.GetAsync(new Uri("http://www.bing.com"));
 Console.WriteLine(response.StatusCode.ToString());

 var content = await response.Content.ReadAsStringAsync();
 Console.WriteLine(content.Take(1000).ToArray());
 }
}

await: Mindig egy Task await-elhető (vagy taszk szerű dolog: vagyis van neki GetAwaiter metódusa,
ami meghatározott metódusokkal rendelkező objektummal tér vissza)! Akár létre is hozhatunk egy
Task-ot, amit egy lokális változóban tárolunk, akkor azt is tudjuk await-elni.

async: Ha await-elni akarunk, akkor muszáj async-nak lennie a tartalmazó metódusnak, mert
ilyenkor építi fel a fordító az aszinkron végrehajtáshoz szükséges állapotgépet.

Debuggoljuk ki! Minden Console, async sorra tegyünk töréspontot, debuggolás során (F5) kövessük
végig, milyen sorrendben éri el őket a végrehajtás. Nézzük meg, melyik rész milyen szálon fut le

(debug közben Debug › Windows › Threads). A LoadWebPageAsync utáni rész előbb fog lefutni, mint
az első await utáni rész. Az await utáni rész nem a Main Thread-en fut. Figyeljük meg azt is, hogy az
Ez a vége szöveg hamarabb kiíródik, mint a HTML oldal letöltése.

Próbáljuk ki a Console.ReadKey-t kikommentezve is, ilyenkor jó eséllyel hamarabb leáll a process,
minthogy a Task befejeződne. Az ilyen fire-and-forget típusú hívásoknál nem figyel arra senki, hogy
itt még valami háttérművelet folyik.



Az async void általában helytelen kód, mert nem lehet bevárni a háttérművelet
végét. Az async Task máris jobb a bevárhatóság és a hibakezelés miatt, és alig kell
módosítani a kódot. Kivétel, amikor valamiért kötelező a void, például, ha esemény

39

vagy interfész előírja.

Az oldalletöltés bevárása

Módosítsuk úgy a kódot, hogy a LoadWebPageAsync utáni rész várja meg a letöltés befejeződését. Ez
akkor jó például, ha a letöltés után valamit még szeretnék elvégezni a hívó függvényben.

Módosítsuk a LoadWebPageAsync fejlécét, hogy taszkot adjon vissza:

public static async Task LoadWebPageAsync() //void helyett Task

Várjuk be az aszinkron művelet végét a legfelső szintű kódban.

 await LoadWebPageAsync(); //await bekerült

/**/Console.WriteLine("Ez a vége");
/**//*Console.ReadKey();*/

Figyeljük meg, hogy így már az Ez a vége felirat már a letöltés után jelenik meg.

await-et használtunk a legfelső szintű kódban, ilyenkor automatikusan async kulcsszóval ellátott
Main generálódik - valami hasonló, mint az alábbi kódrészlet.

await LoadWebPageAsync();
Console.WriteLine("Ez a vége");
//Console.ReadKey();

Háttérművelet eredményének visszaadása

Alakítsuk át, hogy a weboldal tartalmának kiíratása a legfelső szintű kódban történjen, és a
LoadWebPageAsync csak adja vissza a tartalmat string-ként. Ehhez módosítsuk a visszatérési értéket
Task<string>-re, így az await már eredménnyel fog tudni visszatérni.

 var content = await LoadWebPageAsync();
 Console.WriteLine(content);

/**/Console.WriteLine("Ez a vége");
 Console.ReadKey();

 static async Task<string> LoadWebPageAsync() //generikus paraméter
/**/{
/**/ using (var client = new HttpClient())
/**/ {
/**/ var response = await client.GetAsync(new Uri("http://www.bing.com"));
/**/ Console.WriteLine(response.StatusCode.ToString());
/**/

40

/**/ var content = await response.Content.ReadAsStringAsync();
 return new string(content.Take(1000).ToArray());
/**/ }
/**/}

A return valójában ezen Task eredményét állítja be async metódusok esetében, és nem egy
nemgenerikus Task objektummal kell visszatérjünk.

Nem(igazán) nullozható referencia típusok
Korábban láttuk, hogy hogyan lehet egy érték típusnak null értéket adni (Nullable<T>). Az érem
másik oldala a C# 8-ban megjelent nem nullozható referencia típusok. Nem egy új típust vezettek
be, hanem az eddig megszokott típusneveket értelmezi máshogyan a fordító. A projektfájlban az
alábbi beállítás kapcsolja be ezt a funkciót.

<Nullable>enable</Nullable>

 Ezen kívül még preprocessor direktívákkal is szabályozhatjuk a működést.

Induljunk ki egy egyszerű személyeket nyilvántartó adatosztályból, ahol elhatározzuk, hogy a
középső név kivételével a többi névdarab nem nullozható szöveg lesz.

Console.WriteLine("Hello World!");
class Person
{
 string FirstName; // Not null
 string? MiddleName; // May be null
 string LastName; // Not null
}

Ez máris számos figyelmeztetést generál. A nem nullozható referencia típusok bekapcsolásával
alapesetben nem hibák, csak új figyelmeztetések generálódnak. A vezetéknév és keresztnév
adatoknak nem szabadna null értékűnek lennie (a sima string típus nem nullozható típust jelent),
viszont így az alapérték nem egyértelmű, explicit inicializálnunk kellene.

Fontos megértenünk, hogy a string típus fizikailag továbbra is lehet null értékű, mindössze a fordító
számára jelezzük, hogy szándékunk szerint sohasem szabadna null értéket felvennie. A fordító
cserébe figyelmeztet, ha ezt megsértő kódot detektál.

Az egyik legkézenfekvőbb megoldás (az inline inicializáció mellett), ha konstruktorban
inicializálunk konstruktorparaméter alapján. Adjunk konstruktort a típusnak:

public Person(string fname, string lname, string? mname)
{
 FirstName = fname;
 LastName = lname;

41

https://docs.microsoft.com/en-us/dotnet/csharp/nullable-references#nullable-contexts

 MiddleName = mname;
}

Ezzel meg is oldottunk minden figyelmeztetést.


Ha biztosan látni akarjuk az összes figyelmeztetést, akkor sima Build művelet
helyett használjuk a Rebuild-et.


Sajnos a kötelezően konstruktoron keresztüli inicializáció nem mindig működik,
például a sorosítók általában nem szeretik, ha nincs alapértelmezett konstruktor.

Mennyire okos a fordító a null érték detektálásában? Nézzünk pár példát! Az alábbi statikus
függvényt tegyük bele a Person osztályunkba és vegyük fel a using static System.Console;
névtérhivatkozást is.

static void M(string? ns)
{
 WriteLine(ns.Length); ①
 if (ns != null)
 {
 WriteLine(ns.Length); ②
 }
 if (ns == null)
 {
 return;
 }
 WriteLine(ns.Length); ③
 ns = null;
 WriteLine(ns.Length); ④
 string s = default(string); ⑤
 string[] a = new string[10]; ⑥
}

① Figyelmeztetés lehetséges null értékre, mert a típusa szerint nullozható.

② Ha egy egyszerű if-fel levizsgáljuk, akkor máris ok. Pedig pl. többszálú környezetben az if
kiértékelése és ezen sor végrehajtása között a változó akár null értékre is beíródhat.

③ Az előtte lévő rövidzár is megnyugtatja a fordítót, így itt sincs figyelmeztetés.

④ Ezt az előző sor alapján figyelmeztetéssel jutalmazza.

⑤ Ez is figyelmeztetés, a default operátor által adott értékkel (null) nem inicializálhatunk.

⑥ Ez viszont nem figyelmeztetés, pedig egy csomó null jön létre. Ha ez figyelmeztetés lenne, az
aránytalanul megnehezítené a tömbök kezelését.

Látható, hogy az egyszerűbb eseteket jól kezeli a fordító, de korántsem mindenható, illetve nem
mindig szól akkor sem, amikor egyébként szólhatna.

A további példákhoz vegyünk fel pár segédfüggvényt a Person osztályba:

42

private Person GetAnotherPerson()
{
 return new Person(LastName, FirstName, MiddleName ?? string.Empty);
}

private void ResetFields()
{
 FirstName = default!;
 LastName = null!;
 MiddleName = null;
}

Látható, hogy vannak megkerülő megoldások arra, hogy ráerőszakoljuk a fordítóra az akaratunkat,
a felkiáltójel használatával beírhatunk null értékeket nem nullozható változókba (ez az ún. null
forgiving operator). Illetve string esetén null helyett használhatjuk az üres string értéket - ami
nem biztos, hogy sokkal jobb a null értéknél. Mindenesetre ezek a függvények nem okoznak újabb
figyelmeztetéseket.

Nézzük meg, hogy mennyire tudja lekövetni a fenti függvények működését a fordító. Vegyünk fel
ennek tesztelésére egy újabb függvényt a Person osztályba:

void M(Person p)
{
 if (p.MiddleName != null)
 {
 p.ResetFields();
 WriteLine(p.MiddleName.Length); ①

 p = GetAnotherPerson();
 WriteLine(p.MiddleName.Length); ②
 }
 p.FirstName = null; ③
 p.LastName = p.MiddleName; ④
}

① A fordító nem követi le, hogy a ResetFields veszélyes módon változtatja az állapotot, csak azt
nézi, hogy az if már kivédte a veszélyt.

② Ez egy fals pozitívnak tűnő eset, az előző sorban lévő függvény alapján a p.MiddleName nem
lehetne null, de a fordító csak azt figyeli, hogy a beburkoló if ellenőrzése a p megváltozása miatt
már nem érvényes.

③ Egyértelműen jogos figyelmeztetés.

④ Jogos a figyelmeztetés, mert nem kezeljük a p.MiddleName == null esetet.

Struktúratagok esetén is a fals negatív eset jön elő. Próbáljuk ki, akár a Person osztályba írva:

struct PersonHandle
{

43

 public Person person;
}

Nem kapunk figyelmeztetést.

A felkiáltójeles ráerőszakolást a ResetFields-ben látható ámokfutás helyett inkább a fals pozitív
esetek kezelésére használjuk. Javítsuk ki a GetAnotherPerson hívás miatti fals pozitív esetet az
M(Person) függvényben:

/**/p = GetAnotherPerson();
 WriteLine(p.MiddleName!.Length); //bekerült egy '!'

Figyeljük meg, ahogy a figyelmeztetés eltűnik.

Ha igazán elkötelezettek vagyunk a null kiirtása mellett, akkor bekapcsolhatjuk, hogy minden, a
null kezelés miatti, fordító által detektált figyelmeztetés legyen hiba. A projekt beállítási között (a

projekten jobbklikk › Properties), a Build lapon adjuk meg a Treat specific warnings as errors
opciónak a nullable értéket. (Ha több értéket akarunk megadni, akkor a ; elválasztót
alkalmazhatjuk.)

Ellenőrizzük, hogy tényleg hibaként jelennek-e meg az eddigi null kezelés miatti figyelmeztetések.

Mivel ez csak egy példakód, ne javítsuk ki a hibákat, csak távolítsuk el a projektet a solutionből (a

projekten jobbklikk › Remove).

Tuple nyelvi szinten, lokális függvények, Dispose
minta

Tuple nyelvi szinten, lokális függvények

Készítsünk Fibonacci számsor kiszámolására alkalmas függvényt, ahol használjuk ki az alábbi két
új nyelvi elemet. Természetesen nagyon sokféleképpen meg lehetne valósítani ezt a metódust, de
most kifejezetten a tuple-ök nyelvi támogatását és lokális függvényeket szeretnénk demonstrálni.

• Lokális függvények: ezek a függvények csak adott metódusban láthatók. Két esetben érdemes
őket használni: ha nem szeretnénk „szennyezni” a környező osztályt különféle privát
segédmetódusokkal, vagy ha egy mélyebb, komplexebb hívási láncban nem szeretnénk a
paramétereket folyamatosan továbbpasszolni, ugyanis ezek a metódusok elérik a külső scope-
on található változókat is (a lenti esetben például az x-et).

• Value tuple típus: a tuple (ennes) több összetartozó érték összefogása, ami gyors, nyelvi szinten
támogatott adattovábbítást tesz lehetővé - gyakorlatilag inline, nevesítetlen struktúratípust
hozunk így létre. Publikus API-kon, függvényeken nem érdemes használni, viszont privát, belső
használatnál sebességnövekedést és API tisztulást érhetünk vele el. Érték típus.


Léteznek generikus Tuple<> típusok is. Ezek referencia típusok, hasonló szerepet
töltenek be, viszont az egyes értékeiket az elég semmitmondó Item1, Item2…

44

neveken lehet elérni.

static long Fibonacci(long x)
{
 (long Current, long Previous) Fib(long i) ①
 {
 if (i == 0) return (1, 0);
 var (curr, prev) = Fib(i - 1); ②
 Thread.Sleep(100); ③
 return (curr + prev, curr);
 }

 return x < 0
 ? throw new ArgumentException("Less negativity please!", nameof(x))
 : Fib(x).Current;
}

① Nevesített tuple visszatérés. Ez egy lokális függvény, szintaxist tekintve függvényen belüli
függvény.

② Az eredmény eltárolása egy tuple változóban. Ezzel dekonstruáljuk is, darabokra szedjük a
tuple-t, mert curr, prev változón keresztül elérjük a két long alkotórészt. Ugyanezen sorban
történik a rekurzív hívás is.

③ Lassú művelet szimulációja mesterséges késleltetéssel.


A dekonstrukciós szintaxis a korábbi gyakorlaton megismert rekord típusok esetén
is működik.

Dispose minta

A Dispose minta az erőforrás-felszabadítás megfelelő megvalósításához készült. Hasonló elv
mentén üzemel, mint a destruktor, viszont a minta nem feltétlenül kötött az objektum
életciklusának elejéhez és végéhez. Amennyiben egy objektum megvalósítja az IDisposable
interfészt, van Dispose metódusa. A metódus meghívásával az objektum által használt, nem a
keretrendszer által menedzselt erőforrásokat szabadítjuk fel. Nem csak memóriafoglalásra kell
gondolni, hanem lehetnek nyitott fájlrendszeri handle-ök, adatkapcsolatok, stream-ek, vagy üzleti
erőforrások, tranzakciók.

Mérjük meg az első pár Fibonacci szám kiszámítását (a mesterséges késleltetéssel):

var sw = Stopwatch.StartNew();
foreach (var n in Enumerable.Range(1, 15))
{
 Console.WriteLine($"{n}: {Fibonacci(n)}");
}
sw.Stop();
Console.WriteLine($"Elapsed: {sw.ElapsedMilliseconds}");

45

Console.ReadKey();

Ez így jó, működik, viszont nem újrahasznosítható ez az időmérési mechanizmus.

Készítsünk egy saját időmérő osztályt StopwatchWrapper néven, ami a Stopwatch használatát
egyszerűsíti a Dispose mintán keresztül.

public class StopwatchWrapper : IDisposable
{
 public Stopwatch Stopwatch { get; }

 public string Title { get; }

 public StopwatchWrapper(string? title = default)
 {
 Title = title ?? Guid.NewGuid().ToString();
 Console.WriteLine($"Task {title} starting at {DateTime.Now}.");
 Stopwatch = Stopwatch.StartNew();
 }
}

Ha kérjük a villanykörte segítségét az IDisposable-ön, akkor 2x2 lehetőségünk van: megvalósítjuk az
interfészt implicit vagy explicit, illetve megvalósítjuk-e az interfészt a Dispose mintát alkalmazva.
Valósítsuk meg implicit a Dispose mintát!

Fussuk át a generált kódot, ami szépen kommentezett. A pattern lényege, hogy a nem menedzselt
erőforrásokat (unmanaged objects / resources) szükséges felszabadítanunk, amit a Dispose
metódusokban, illetve menedzselt kód esetén a kommentekkel kijelölt helyen érdemes
elvégeznünk. Készítsük el az időmérő mechanizmust!

/**/protected virtual void Dispose(bool disposing)
/**/{
/**/ if (!disposedValue)
/**/ {
/**/ if (disposing)
/**/ {
 Stopwatch.Stop();
 Console.WriteLine(
 $"Task {Title} completed in { Stopwatch.ElapsedMilliseconds} ms "+
 $"at { DateTime.Now}");

46

/**/ }
/**/ disposedValue = true;
/**/ }
/**/}

Csak felügyelt erőforrásokkal (managed objects) dolgozunk, így csak egy helyen kellett a leállító
logikát megadnunk.

Az IDisposable interfészt megvalósító elemekkel használhatjuk a using konstrukciót:

using (new StopwatchWrapper("Fib 1-15"))
{
 foreach (var n in Enumerable.Range(1, 15))
 {
 Console.WriteLine($"{n}: {Fibonacci(n)}");
 }
}

Tehát a using használatával a blokk elejét és végét tudjuk kezelni. Gyakorlatilag egy try-finally-val
ekvivalens a minta, a finally-ben meghívódik a Dispose metódus.

Jelenleg csak a folyamat végén kapunk jelentést az eltelt időről. Részidők kiírásához készítsünk egy
segédfüggvényt a StopwatchWrapper-be:

public void Snapshot(string text) =>
 Console.WriteLine(
 $"Task {Title} snapshot {text}: {Stopwatch.ElapsedMilliseconds} ms"
);

Hívjuk meg a foreach ciklusból:

/**/using (
 var sw =
/**/ new StopwatchWrapper("Fib 1-15"))
/**/{
/**/ foreach (var n in Enumerable.Range(1, 15))
/**/ {
 sw.Snapshot(n.ToString());
/**/ Console.WriteLine($"{n}: {Fibonacci(n)}");
/**/ }
/**/}

47

Entity Framework Core I-II.

Az Entity Framework leképezési módszerei
Az objektum-relációs (OR) leképzés (mapping) két fő részből áll: az egyik az adatbázis séma, a másik
pedig egy menedzselt kódbéli objektummodell. Esetünkben a C# kódban lévő osztályokat képezzük
le adatbázisbeli objektumokká, ezt hívjuk Code-First mapping módszernek. A másik irány is
lehetséges, ha már van egy adatbázis sémánk, akkor azt is leképezhetjük Code-First modellé. Ezt a
folyamatot Reverse Engineered Code-Firstnek vagy scaffoldingnak hívjuk (ez utóbbival nem
foglalkozunk ezen gyakorlat keretében).

Akárhogy is, az Entity Framework Core (EF) mint OR leképező eszköz (ORM) használatához az
alábbi összetevőkre van szükség:

• objektummodell kódban

• relációs modell az adatbázisban

• leképezés (mapping) az előbbi kettő között, szintén kódban megadva

• maga az Entity Framework Core, mint (NuGet) komponens

• Entity Framework Core kompatibilis adatbázis driver (provider)

• adatbázis kapcsolódási adatok, connection string formátumban

A Code-First leképezési módszer
A Code-First módszer lényege, hogy elsőként az OO entitásokat definiáljuk egyszerűen
programkódban, majd a leképezést szintén programkódban. A leképezés alapján az EF eszközök
képesek az adatbázis létrehozására, inicializálására és a séma változáskövetésére is (lásd lentebb a
Code-First Migrations részt).

Az entitások definiálása

Készítsünk egy .NET 6 konzolos alkalmazást (csak ne EF legyen a neve), majd a projekten belül
hozzunk létre egy Entities nevű mappát. Adjunk hozzá a mappához egyszerű osztályokat az alábbi
sémának megfelelően:

• Product (Id: int, Name: string, UnitPrice: int)

• Order (Id: int, OrderDate: DateTime)

• Category (Id: int, Name: string)

Az osztályok legyenek publikusak, az attribútumok pedig egyszerű auto-implementált propertyk
(prop snippet).

A string típusú property-k esetén figyelmeztet a fordító, hogy nem nullozható referencia típusú
property inicializáció után is null értékű lehet. Ennek kivédésére az ajánlott módszer olyan
konstruktor írása, ami az ilyen propertyk kezdeti értékét paraméterben megkapja és beállítja.

48

https://docs.microsoft.com/en-us/ef/core/managing-schemas/scaffolding
https://docs.microsoft.com/en-us/ef/core/managing-schemas/scaffolding
https://github.com/dotnet/efcore/issues/8035
https://github.com/dotnet/efcore/issues/8035



A konstruktort az EF is fogja hívni, neki automatikusan tudnia kell, hogy melyik
paraméter melyik tulajdonságot állítja - pedig ez a konstruktor szignatúrájából
alapesetben nem kikövetkeztethető. Emiatt önkéntesen tartanunk kell magunkat
ahhoz, hogy a konstruktorparaméter nevének és a property nevének egyeznie kell,
kivéve, hogy a paramétere neve kezdődhet kisbetűvel is (camel casing).

Példaként így néz ki a Product konstruktor:

public Product(string name)
{
 Name = name;
}



A Visual Studio Quick Action-ként fel szokta ajánlani a Generate constructor
[konstruktorfejléc] vagy Add parameter to [konstruktorfejléc] gyors
kódgenerálási lehetőségeket, amivel létrehozhatjuk vagy bővíthetjük a szükséges
konstruktort.

Mapping és egyéb metaadatok megadása I.

Eddig megadtuk az entitás nevét, a relációs attribútumok nevét és típusát, azonban ezen felül még
sok mindent lehet/kell megadni: az entitás elsődleges kulcsa, idegen kulcsok, relációk, kényszerek
és egyéb mapping információk (pl. hogy mi legyen a relációs attribútum oszlopneve az
adatbázisban). A Code-First stratégia kétfajta módszert is kínál ezek megadására. Az egyik módszer,
hogy C# attribútumokat helyezünk az entitásosztályok különböző részeire, a másik, hogy ún. fluent
jellegű kódot alkalmazunk. Ez utóbbi módszer elsőre furcsán néz ki, de többet tud (van, amit
attribútummal nem lehet megadni).

A fenti két módszert kiegészíti a konvenció alapú konfiguráció, amikor az EF a rendelkezésekre álló
adatokból automatikusan következteti ki a metaadatokat: például gyakori, hogy az elsődleges kulcs
neve tartalmazza az id szöveget. Az EF tehát a konvenció alapján kitalálhatja, hogy melyik ez
elsődleges kulcs oszlop. Ha valamit rosszul találna ki, vagy változtatni akarunk a kitalált neveken,
akkor azt az attribútumos vagy a fluent megadással tehetjük meg.


A klasszikus EF6-ban saját konvenciókat is megadhatunk, viszont Core-ban még
nem.

Elsőként azt fogjuk megnézni, hogy mit talál ki az EF, ha semmi plusz adatot nem adunk meg.

Relációk

A fő entitások közötti kapcsolatokat mutatja sematikusan az alábbi ábra:

49

https://github.com/aspnet/EntityFrameworkCore/issues/214

A relációkat idegen kulcs propertyk és navigációs propertyk reprezentálják. Az idegen kulcs
propertyk típusa a kapcsolat másik végén lévő entitás kulcsának típusa. A navigációs propertyk
típusa pedig a kapcsolat másik végén lévő entitás típusa vagy ilyen típusú kollekció.

Egy konkrét kapcsolat esetében: a Product-Category egy-többes kapcsolathoz egy idegen kulcs
property és egy navigációs property tartozik a Product osztályban és egy kollekció típusú navigációs
property a Category-ban. A többes navigációs property-k legyenek csak olvashatók és a típusuk
legyen ICollection<>.


Általánosságban nem kötelező egy kapcsolat mindkét oldalán navigációs property-
t felvenni, de erősen javasolt és mindig jó, ha van. Az entitáson végzendő
műveleteket egyszerűsíti, illetve a konvenciós logika is következtet belőle.

A navigációs propertyk referencia típusúak, így foglalkoznunk kell a nullozhatóság kérdésével. Ha a
kapcsolat modellezési szempontból nem kötelező (például ha nem várnánk el, hogy minden
terméknek legyen megadva a kategóriája), akkor a navigációs property típusa is legyen
értelemszerűen nullozható. Ha a kapcsolat kötelező, akkor az ajánlott eljárás, hogy a navigációs
property típusa ne legyen nullozható - viszont ekkor kezdeti értéket kell adnunk. Gyakori eset, hogy
egy entitást betöltünk adatbázisból, de a hozzá kapcsolódó entitás(oka)t nem, ilyenkor mégis a null
érték lenne a megfelelő. Emiatt az egyik ajánlott módszer, ha a propertyt null forgiving operátorral
inicializáljuk null értékre. Példa: public Category Category { get; set; } = null!;.

Az Order-Product több-többes kapcsolatokhoz hozzuk létre a kapcsolótáblának megfelelő entitást is,
ami egy-egy Product és Order közötti kapcsolatot reprezentálja.

• OrderItem (Id: int, ProductId: int, OrderId: int, Quantity: int)

50



Nem kötelező létrehozni osztályt a kapcsolótáblának, konfigurációval is lehet érni,
hogy a kapcsolótábla létrejöjjön és az EF megfelelően használja. Ezt a módszert
akkor érdemes követni, ha a kapcsolótábla csupán technikai tehertétel, de ha
például extra adatot is tárol, esetünkben a rendelt mennyiséget (Quantity), akkor
jobban követhető kódot eredményez, ha explicit létrehozzuk a kapcsolótáblának
megfelelő entitástípust.

Az így kialakult modell (konstruktorok nélkül):

Kódként:

public class Category
{
 public int Id { get; set; }
 public string Name { get; set; }
 public ICollection<Product> Products { get; }
 = new List<Product>();
 public Category(string name)
 {
 Name = name;
 }
}

public class Order
{
 public int Id { get; set; }
 public DateTime OrderDate { get; set; }
 public ICollection<OrderItem> OrderItems { get; }
 = new List<OrderItem>();
}

public class Product
{
 public int Id { get; set; }

51

https://docs.microsoft.com/en-us/ef/core/modeling/relationships?tabs=fluent-api%2Cfluent-api-simple-key%2Csimple-key#many-to-many

 public string Name { get; set; }
 public int UnitPrice { get; set; }
 public int CategoryId { get; set; }
 public Category Category { get; set; } = null!;
 public ICollection<OrderItem> ProductOrders { get; }
 = new List<OrderItem>();
 public Product(string name)
 {
 Name = name;
 }
}

public class OrderItem
{
 public int Id { get; set; }
 public int ProductId { get; set; }
 public Product Product { get; set; } = null!;
 public int OrderId { get; set; }
 public Order Order { get; set; } = null!;
 public int Quantity { get; set; }
}

Vegyük észre, hogy eddig semmilyen EF specifikus kódot nem írtunk, a modellünk sima ún. POCO
osztályokból áll.

Kapcsolat az adatbázissal

DbContext - NuGet

Az entitásokat definiáltuk, a mapping-et az EF eszére bíztuk, a következő lépés az adatbázisséma
létrehozása a mapping alapján, amit képes az EF migrációs eszköze megoldani. Műveletet az ún.
kontext-en keresztül tudunk végezni. Érdemes saját kontext típust létrehozni, amit az alap DbContext
-ből származtatunk. Eddig még nem is írtunk semmilyen EF specifikus kódot, most viszont már kell
a DbContext típus, így NuGet-ből hozzá kell adnunk a Microsoft.EntityFrameworkCore.SqlServer
csomagot. Nem ez a csomag tartalmazza a DbContext-et, viszont függőségként hivatkozza
(Microsoft.EntityFrameworkCore).

 NuGet csomagok telepítéséhez segítség a dokumentációban.



Olyan csomagoknál, ahol a verziószámozás követi az alap keretrendszer
verziószámozását, törekedjünk arra, hogy a csomagok verziói konzisztensek
legyenek egymással és a keretrendszer verziójával is - akkor is, ha egyébként a
függőségi szabályok engednék a verziók keverését. Ha a projektünk például .NET
6-os keretrendszert használ, akkor az Entity Framework Core és egyéb extra
ASP.NET Core csomagok közül is olyan verziót válasszunk, ahol legalább a főverzió
egyezik, tehát valamilyen 6.x verziót. Ez nem azt jelenti, hogy az inkonzisztens
verziók mindig hibát eredményeznek, inkább a projekt általában stabilabb, ha a
főverziók közötti váltást egyszerre, külön migrációs folyamat (példa) keretében

52

https://stackoverflow.com/a/250006/472575
https://docs.microsoft.com/en-us/nuget/quickstart/install-and-use-a-package-in-visual-studio#nuget-package-manager
https://learn.microsoft.com/en-us/aspnet/core/migration/31-to-60

végezzük.

Az Entity Framework önmagában független az adatbázis implementációktól, azokhoz különböző,
adatbázisgyártó-specifikus adatbázis providereken keresztül kapcsolódik. A
Microsoft.EntityFrameworkCore.SqlServer csomag hivatkozza az EF absztrakt relációs
komponensét (EntityFrameworkCore.Relational), és tartalmazza az MS SQL Server-hez tartozó
providert. A providert a DbContext OnConfiguring metódusában adhatjuk meg, esetünkben a
UseSqlServer metódussal, ami egy connection stringet vár.

MS SQL Server helyett a LocalDB nevű fejlesztői adatbázist használjuk, mely fejlesztői szempontból
gyakorlatilag megegyezik az MS SQL Server-rel. A LocalDB a Visual Studio-val együtt települ,
minden Windows felhasználónak külön LocalDB példány indítható el. A Visual Studio az SQL Server
Object Explorer ablak megnyitásakor automatikusan létrehozza a felhasználónkhoz tartozó,
MSSQLLocalDB nevű példányt.


A LocalDB külön is letölthető, illetve a vele együtt települő sqllocaldb parancs
segítségével egyszerűen kezelhető. Minderről bővebb információ a
dokumentációban olvasható.

Adjunk hozzá új osztályt a projekthez NorthwindContext néven, ebben definiáljuk majd, hogy milyen
entitáskollekciókon lehet műveleteket végezni.

Az automatikusan létrejövő MSSQLLocalDB nevű LocalDB példány connection stringjét adjuk meg,

pontosabban az SQL Server Object Explorer ablak segítésével másoljuk ki: SQL Server-t kibontva ›
(localdb)\MSSQLLocalDB-n jobbklikk › Properties › Connection String. A kimásolt stringben az
Initial Catalog értékét (a DB nevét) a master-ről változtassuk meg valamilyen más névre, például a
Neptun kódunkra. Ha nincs a stringben Initial Catalog rész, akkor írjuk a string végére, hogy
;Initial Catalog=neptunkod.

53

https://docs.microsoft.com/en-us/ef/core/providers/
https://www.microsoft.com/en-us/sql-server
https://docs.microsoft.com/en-us/sql/tools/sqllocaldb-utility?view=sql-server-ver15



A connection stringben különleges karakterek (pl. '\') vannak. Ha a kimásolt
connection stringet két " közé illesztjük be, a VS automatikusan escape-eli a
különleges karaktereket. Ellenkező esetben (ha pl. a két " a beillesztés után kerül
elhelyezésre a szöveg köré) az automatikus escape-elés nem történik meg, ilyenkor
ne felejtsük el a @-ot a string elé írni, vagy manuálisan escape-elni a szükséges
karaktereket!

public class NorthwindContext : DbContext
{
 protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
 {
 optionsBuilder.UseSqlServer("<connstring>");
 }

 public DbSet<Product> Products => Set<Product>();
 public DbSet<Category> Categories => Set<Category>();
 public DbSet<Order> Orders => Set<Order>();
}


A nagyobb rugalmasság érdekében érdemes a connection stringet konfigurációs
fájlba helyezni, majd az ASP.NET Core konfigurációs megoldásaival felolvasni. Erre
egy későbbi gyakorlaton nézünk példát.



A DbSet<> típusú tulajdonságoknak látszólag csak kényelmi funkciójuk van, a
Set<>() függvényhívásokat egyszerűsítik, azonban valójában nagyobb a
jelentőségük. Többek között ezek alapján deríti fel az EF, hogy melyek az
entitásosztályok, hiszen alapvetően nincsen semmilyen megkülönböztető
jellemzőjük. Alapvetően a DbSet<> típusú property-k típusparaméterei és az így
felderített entitástípusokban lévő navigációs propertyk típusa alapján áll össze az
entitástípusok köre.

Az első verziós adatelérési (DAL) rétegünk ezzel kész is van.

Sémamódosítás

Code-First Migrations

A kódban történő sémamódosításokat követni tudja a keretrendszer, és a változások alapján
frissíteni tudja az adatbázis sémáját lefele, illetve felfele irányban is. Ezt a mechanizmust nevezzük
migrációnak. Esetünkben a séma nulláról felhúzása is már módosításnak számít.

A migráció elvégzésére parancssoros utasításokat kell igénybe vennünk. Itt kétfajta megközelítés is
adott: vannak PowerShell és vannak klasszikus cmd (dotnet cli) parancsaink. Fel kell telepítsük a
projektünkbe valamelyik NuGet csomagot:

• PowerShell: Microsoft.EntityFrameworkCore.Tools (telepítsük fel most ezt)

54

• Parancssor: Microsoft.EntityFrameworkCore.Tools.DotNet

Hozzuk elő a Package Manager Console-t. (Tools › NuGet Package Manager › Package Manager
Console). Ellenőrizzük, hogy a Default Project legördülőben a mi projektünk van-e kiválasztva. Az
Add-Migration <név> paranccsal tudunk készíteni egy új migrációs lépést, így az első migrációnk a
kiinduló sémánk migrációját fogja tartalmazni.

Add-Migration Init

Figyeljük meg, mit generált a projektünkbe ez a parancs. Itt a migrációhoz egy osztályt készít, ami
tartalmazza azokat az utasításokat (Up függvény), amikkel a modellünknek megfelelő táblákat fel
lehet venni. Emellett külön függvényben (Down) olyan utasítások is vannak, melyek ugyanezen
táblákat eldobják.

Fordítás után adjuk ki az Update-Database parancsot, amivel egy adott migrációs állapotig próbálja
frissíteni a sémát. Ha nem adunk meg sémanevet akkor a legfrissebb migrációig frissít:

Update-Database Init



Bizonyos LocalDB verzióknál hibára futhat az adatbázislétrehozás (CREATE FILE
encountered operating system error 5(Access is denied.)), mert rossz helyen próbálja
létrehozni az adatbázisfájlt. Ilyenkor az SQL Server Object Explorer ablakban

bontsuk ki a LocalDB példányunk, alatta a Databases mappán jobbklikk › Add
New Database. A megjelenő ablakban adjuk meg névként ugyanazt az
adatbázisnevet, amit korábban a connection string-ben a master helyett
megadtunk.

Ellenőrizzük le az adatbázis sémáját az SQL Server Object Explorer ablakban. Nézzük meg, hogy
pusztán konvenciók alapján milyen tulajdonságokat talált ki az EF.



Kódból is legenerálhatnánk az adatbázist az aktuális sémával a
DbContext.Database.EnsureCreated metódus segítségével, viszont ez a későbbiekben
megnehezíti a további sémamódosítást, mivel mindig el kellene dobjuk az
adatbázist, illetve a migrációt sem könnyű utólag bevezetni.

Leképezés és egyéb metaadatok megadása II. — fluent és attribútum alapú
leképezés

Definiáljuk felül a kontextünkben az ős OnModelCreating metódusát és itt állítsunk be pár mapping
információt.

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 base.OnModelCreating(modelBuilder);

55

 modelBuilder.Entity<Category>()
 .Property(c => c.Name)
 .HasMaxLength(15);
}

Ezzel a Name property hosszát állítottuk be.


Az OnModelCreating függvényben hivatkozott típusokat is figyelembe veszi az EF az
entitástípusok felderítésekor.

A fluent mellett próbáljuk ki az attribútumos konfigurációt is. Állítsunk át egy oszlopnevet a Product
osztályban a Column attribútummal.

[Column("ProductName")]
public string Name { get; set; }


A fenti miatt az entitásmodellünk már nem POCO, mert EF specifikus attribútum
jelent meg a kódjában.


Érdemes megfigyelni a táblanevek kapcsán, hogy eleve többesszámosított neveket
találunk az adatbázisban. Ezt az IPluralizer service végzi, melyhez saját
implementáció is írható.

Mivel már létezik az adatbázisunk, migráció segítségével kell frissítsük az adatbázis sémáját.
Készítsünk egy új migrációs lépést az Add-Migration utasítással és frissítsük a sémát az Update-
Database paranccsal.

Add-Migration CategoryName_ProductName
Update-Database CategoryName_ProductName


Megnézhetjük az adatbázison futtatott SQL-t is a Script-Migration paranccsal.
Például ez mutatja a legutóbbi módosítást érvényesítő SQL-t: Script-Migration
-From Init



Természetesen mivel még nincsenek adataink az adatbázisban, akár el is
dobhatnánk az adatbázist és újra legenerálhatnánk nulláról a sémát, de most
kifejezetten a migrációt szeretnénk gyakorolni. Az Add-Migration kimenete
figyelmeztet, hogy adatvesztés is történhet. Vannak veszélyes migrációs műveletek,
ezért érdemes átnézni a generálódó migrációs kódot.


Ha valamilyen okból nem megfelelő a migrációnk, ne töröljük kézzel a generált C#
kódfájlokat. Használjuk helyette a Remove-Migration parancsot (mindenfajta
paraméter nélkül), ami a legutóbbi migrációt törli.

Nézzük meg, milyen migrációs osztályt generáltunk, és hogy ez milyen utasításokat tartalmaz.

56

https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-2.0#pluralization-hook-for-dbcontext-scaffolding

Ellenőrizzük, hogy a Name oszlop most már az új kényszereknek megfelelően lett-e felvéve, és hogy
a terméknév oszlop neve is megváltozott-e.

Ezzel kész a DAL rétegünk konfigurációja, egyúttal mindent kipipáltunk az anyagrész elején lévő
felsorolásból.

Adatbázis naplózás
A következő feladat könnyebb követhetősége érdekében állítsuk be a naplózást az Entity
Framework kapcsán. A kontext osztályba:

/**/protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
/**/{
/**/ optionsBuilder.UseSqlServer("<connstring>") // ; törölve
 .LogTo(Console.WriteLine, LogLevel.Information);
/**/}


Ha nem a konzolt szeretnénk teleszemetelni, akkor akár a Debug kimenetre
(Output ablak) is írhatunk. Ehhez a LogTo-nak adjuk meg paraméterként a m ⇒
Debug.WriteLine(m) delegátot.

Beszúrás
Írjunk egy egyszerű beszúró kódot a Program.cs-be. Várjunk paraméterül egy kontext-et, és csak
akkor szúrjunk be az adatbázisba bármit, ha még üres.

static void SeedDatabase(NorthwindContext ctx)
{
 if (!ctx.Products.Any())
 {
 var cat_drink = new Category("Ital");
 var cat_food = new Category("Étel");
 ctx.Categories.Add(cat_drink);
 ctx.Categories.Add(cat_food);
 ctx.Products.Add(new Product("Sör")
 { UnitPrice = 50, Category = cat_drink });
 ctx.Products.Add(new Product("Bor")
 { Name = "Bor", Category = cat_drink });
 ctx.Products.Add(new Product("Tej")
 { Name = "Tej", CategoryId = cat_drink.Id });
 ctx.SaveChanges();
 }
}

Figyeljük meg, hogy kevertük a kapcsolatok beállításánál a navigációs property szerinti, illetve a
sima Id érték beállítást.

57

Hívjuk meg a legfelső szintű kódból és próbáljuk meg lekérdezni az első terméket. Rakjunk a kód
végére egy Console.ReadKey-t, hogy legyen időnk megnézni a naplót.

using var ctx = new NorthwindContext();
SeedDatabase(ctx);
var p = ctx.Products.FirstOrDefault();

Console.ReadKey();

Próbáljuk ki! Hibára fut, mert beszúrásnál az Id értékes hivatkozás alapértelmezett int, azaz 0
értékű lesz, hiszen a kategória is új. Az új elemeknél gyakori, hogy az adatbázis osztja ki az
elsődleges kulcs értéket, addig az alapértelmezett értékű. Konvenció szerint a mi Id oszlopaink is
ilyenek lesznek (ún. IDENTITY oszlopok). A termék beszúrásakor viszont a 0 érték már nem lesz
helyes, hiszen addigra a kategória kapott valamilyen kulcs értéket. Mindezt a problémát navigációs
property-s hivatkozással elkerülhetjük.


Figyeljük meg a konzol naplóban, hogy a Category beszúrása még megtörténik, de
az egyik Product hozzáadása már elszáll. A debuggerrel, ha megállunk a
SaveChanges híváson, akkor látható, hogy a CategoryId property értéke nulla.


Figyeljük meg azt is, hogy a SaveChanges hívásig nem történik módosító
adatbázisművelet. Az EF memóriában gyűjti a változásokat, amiket a SaveChanges-
szel szinkronizálunk az adatbázisba.



Itt láthatjuk az alapértelmezett tranzakciókezelés működését is. Egy hívásban több
elemet kell beszúrni, ha bármelyik művelet meghiúsul, akkor semmilyen változás
nem érvényesül az adatbázisban. Általánosan igaz, hogy egy SaveChanges vagy
minden változást érvényesít vagy semmit sem.

Javítsuk ki:

/**/ctx.Products.Add(new Product("Tej")
/**/ { Name = "Tej",
 Category = cat_drink //navigációs property-re váltottunk
/**/ });
/**/ctx.SaveChanges();

Ennek már le kell futnia. Nézzük meg a konzolon az SQL utasításokat és a változásokat az
adatbázisban. Paraméterezett INSERT utasításokat használ az EF, így elkerülve az SQL injection
támadást.



A háttérben az EF minden új entitásnak kioszt egy átmeneti azonosítót, amit
felhasználhatunk a fenti hiba elkerülésére, ha semmiképp sem akarjuk a
navigációs property-ket használni. Így tudnánk a context-től elkérni:
ctx.Entry(cat_drink).Property(e ⇒ e.Id).CurrentValue

58

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql-identity-property



Ha egyszerre több egymásra hivatkozó elemet szúrunk be és azonosító alapján
kötjük őket össze, mindig gondoljuk át, hogy a tényleges adatbázisbeli azonosítók
biztosan rendelkezésre állnak-e, mert különben futásidejű kivételt kaphatunk, a
fordító nem fog figyelmeztetni.

Ősfeltöltés (seeding) elvárt adattartalom megadásával
A kontextuskonfiguráció részeként megadhatjuk, hogy milyen adattartalmat szeretnénk az egyes
táblákban látni. A kontext OnModelCreating függvényének végére:

modelBuilder.Entity<Category>().HasData(
 new Category ("Ital") { Id = 1 }
);

modelBuilder.Entity<Product>().HasData(
 new Product("Sör") { Id = 1, UnitPrice = 50, CategoryId = 1 },
 new Product("Bor") { Id = 2, UnitPrice = 550, CategoryId = 1 },
 new Product("Tej") { Id = 3, UnitPrice = 260, CategoryId = 1 }
);

Fontos, hogy ezen módszer esetén mindenképp kézzel meg kell adnunk az elsődleges kulcs
értékeket. Fordítás után generáltassunk új migrációt és frissítsük is az adatbázist - ez utóbbi hibára
fog futni:

Add-Migration Seed
Update-Database

A HasData alapján generált migrációs kód nem veszi figyelembe az időközben bekerült adatokat,
csak a modellt és a többi migrációt nézi. Ha megnézzük a generált kódot, láthatjuk, hogy csak sima
beszúrások. Mivel mi közben jól összeszemeteltük az adatbázist, a migráció által kiadott beszúró
műveletek jó eséllyel hibára futnak.

Ha szeretnénk tiszta lappal indulni, bármikor kipucolhatjuk az adatbázist a speciális nullás
migrációra való frissítéssel, majd újrahúzhatjuk a HasData-nak köszönhetően kezdeti adatokkal
ősfeltöltve.

Update-Database 0
Update-Database

Ezek után a SeedDatabase hívásra nincs szükség, kommentezzük ki.

Lekérdezések
Minden rész után az előző szakasz kódját kommentezzük ki, hogy ne keltsen felesleges zajt a
kimeneten az előző utasítás, illetve ne legyenek felesleges mellékhatások.

59

Kérdezzük le azoknak a termékeknek a nevét, melyeknek neve egy adott betűt tartalmaz:

//SeedDatabase(ctx);
//var p = ctx.Products.FirstOrDefault();

var q = from p in ctx.Products
 where p.Name.Contains("ö")
 select p.Name;

foreach (var name in q)
{
 Console.WriteLine(name);
}

Itt figyelhető meg a korábban már tárgyalt IEnumerable<> - IQueryable<> különbség. A Products
property típusa DbSet, ami IQueryable<>. Az IQueryable<>-en történő hívások kifejezésfát (
Expression) építenek és szintén IQueryable<>-t adnak vissza. A q értéke egy olyan IQueryable<>, ami
Expression-jében tartalmazza a teljes lekérdezést. Amikor szükség van az adatra, a kifejezésfa
alapján SQL generálódik és ez az SQL fut le az adatbázison.

A debuggerrel léptessük át az egyes utasításokon a program futását. A késleltetett kiértékelés miatt
csak a foreach végrehajtása közben fog az adatbázishoz fordulni az EF, hiszen csak ekkor van
ténylegesen szükség az adatra. Nézzük meg a lefuttatott SQL-t is. Sikerült az IQueryable<>-ben
található Expression-t SQL utasítássá alakítania.

Az EF elég sok C# függvényt SQL-lé tud fordítani. Példaképp alakítsuk a visszaadott nevet
nagybetűssé.

/**/var q = from p in ctx.Products
/**/ where p.Name.Contains("ö")
/**/ select p.Name
 .ToUpper();

Figyeljük meg a konzolon a generált SQL-t: a projekciós részbe bekerült az UPPER SQL függvény.

Vegyes kiértékelés

A fák sem nőnek az égig, az EF sem tud minden C# függvényt SQL-lé fordítani. Próbáljuk ki úgy,
hogy a Contains-t karakterrel hívjuk meg a szűrésben.

var q = from p in ctx.Products
 where p.Name.Contains('ö')
 select p.Name;

InvalidOperationException-t kapunk: ezt a lekérdezést nem tudja a provider SQL-lé fordítani. Egyik
lehetőségünk, ahogy a hibaüzenet is írja, hogy kikényszerítjük a kiértékelést a nem leforduló
művelet elé helyezett AsEnumerable vagy ToList (illetve ezek aszinkron változatai) hívással.

60

Próbáljuk ki - mivel a szűrést nem sikerült átfordítani, a szűrés elé a from végére tegyük az
AsEnumerable-t:

/**/var q = from p in ctx.Products //ez még LINQ-to-Entities
 .AsEnumerable()
/**/ where p.Name.Contains('ö') //ez már LINQ-to-Objects
/**/ select p.Name.ToUpper();

Ez működik, de a konzolon megjelenő SQL utasításon látszik, hogy a teljes termék táblát
lekérdeztük és felolvastuk a memóriába. Az AsEnumerable jelentése: a lekérdezés innentől LINQ-to-
Objects-ként épül tovább, a lekérdezés eddigi részének memóriabeli reprezentációja lesz az
adatforrás, tehát a szűrés és a projekció már memóriában fut le. Mivel a teljes lekérdezés egy része
LINQ-to-Entities (adatbázis értékeli ki), a másik része LINQ-to-Objects (a .NET runtime értékeli ki),
az ilyen lekérdezéseket ún. vegyes kiértékelésűnek (mixed evaluation), a LINQ-to-Objects részt
kliensoldali kiértékelésűnek (client evaluation) nevezik. A q típusa ebben az esetben már nem
IQueryable<>, csak IEnumerable<>.



Érdemes összevetni a where operátor definícióját (kurzorral ráállva F12 vagy

jobbklikk › Go To Definition) a két változatnál. Az első esetben IQueryable az
adatforrás és Expression a feltétel, a másodiknál IEnumerable az adatforrás és sima
delegate a feltétel.


Különösen fontos, hogy lehetőleg minden EF lekérdezésünket ellenőrizzük le, hogy
minden része ott fut-e le (adatbázisban vagy memóriában), ahol számítunk rá.


Másik lehetőség, ha ilyenbe ütközünk, hogy a lekérdezést megpróbáljuk úgy átírni,
hogy minél nagyobb része lefuttatható legyen adatbázisban. Ez a konkrét példában
egyszerű, csak vissza kell írni az első változatot.

Lekérdezések összefűzése és címkézése

Kérdezzük le egy bizonyos árnál drágább, bizonyos betűt a nevükben tartalmazó termékek nevét -
mindezt két külön lekérdezésben:

var q = from p in ctx.Products.TagWith("Névszűrés")
 where p.Name.Contains("r")
 select p;

var q2 = from p in q
 where p.UnitPrice > 20
 select p.Name;

foreach (var name in q2)
{
 Console.WriteLine(name);
}

61

A TagWith használatával könnyebben megtalálhatjuk a lekérdezés által generált SQL utasítást a
naplóban: a függvénynek megadott szöveg közvetlenül a generált utasítás elé kerül.

Ismét figyeljük meg a naplóban, mikor fut le és milyen lekérdezés. Itt is látszik a késleltetett
kiértékelés és a lekérdezések össze lesznek fűzve, egy lekérdezés hajtódik végre.


Ez rámutat az EF egy nagy előnyére: bonyolult lekérdezéseket megírhatunk kisebb,
egyszerűbb részletekben, az EF pedig összevonja, sőt optimalizálhatja is a teljes
lekérdezést.

Próbáljuk ki, var q = helyett IEnumerable<Product> q =-val is, ilyenkor nem fűzi össze a lekérdezést.
A q2 műveletei már memóriában fognak lefutni, hiszen a q2 adatforrásként csak egy IEnumerable-t
lát.

Próbáljuk ki, var q = helyett IQueryable<Product> q = -val is, ilyenkor megint összefűzi a
lekérdezést.


Itt is érdemes összevetni a where operátor definícióját (kurzorral ráállva F12 vagy

jobbklikk › Go To Definition) a két lekérdezésrészben.



Nem lehet elégszer hangsúlyozni az IQueryable és az IEnumerable közti
különbségeket. Az IQueryable kifejezések SQL-lé fordulnak (amikor le tudnak), míg
az IEnumerable-en végzett műveletek minden esetben memóriában hajtódnak
végre.


Ha nem akarunk véletlenül memóriabeli kiértékelésre váltani, az implicit típus
(var) alkalmazása jó szolgálatot tehet.

Beszúrás több-többes kapcsolatba
Azokat a termékeket szeretnénk megrendelni, amiknek a nevében van egy adott betű. Használjuk
fel újra az előző, hasonló lekérdezésünket.

var q = from p in ctx.Products
 where p.Name.Contains("r")
 select p;

var order = new Order { OrderDate = DateTime.Now };
foreach (var p in q)
{
 order.OrderItems.Add(
 new OrderItem { Product = p, Order = order, Quantity=2 }
);
}

ctx.Orders.Add(order);
ctx.SaveChanges();

62

Ismét figyeljük, hogy milyen SQL generálódik. Az Order létrehozása után nekünk még egy új
OrderItem entitást is létre kell hoznunk, amit a több-több kapcsolatra használunk fel. Figyeljük meg,
hogy nem kellett minden OrderItem-et külön-külön hozzáadnunk a kontextushoz, az Order
hozzáadásával minden OrderItem is bekerült a kontextusba, majd el is mentődött az adatbázisba.

Kapcsolódó entitások betöltése
Írjuk ki minden termék neve mellé a kategóriáját is.

var products = ctx.Products;

foreach (var p in products)
{
 Console.WriteLine($"{p.Name} ({p.Category.Name})");
}

Figyeljük meg, hogy a fenti lekérdezésben a kategória navigációs property null értékű és kivétel is
keletkezik, pedig biztosan tartozik a termékhez kategória az adatbázisban. Ennek oka, hogy az EF
alapból nem tölti be a navigációs property-k értékeit, ezt egy külön Include metódushívással tudjuk
megtenni az IQueryable típuson. Ez az ún. eager loading.

/**/var products = ctx.Products
 .Include(p => p.Category);

Ismét figyeljük, hogy mikor mi fut le az adatbázisszerveren: ez egy JOIN segítségével egy füst alatt
beránt minden adatot mindkét táblából.

Ha a kapcsolódó Order listát is szeretnénk kitöltetni, akkor ott egyrészt a ProductOrders listát is be
kell Include-olni, másrészt pedig még egy kapcsolattal továbbmenve a OrderItem Order tulajdonságát
is be kell töltetni. Az ilyen többszintes hivatkozást az Include és ThenInclude használatával lehet
elérni:

/**/var products = ctx.Products
/**/ .Include(p => p.Category)
 .Include(p => p.ProductOrders)
 .ThenInclude(po => po.Order);

/**/foreach (var p in products)
/**/{
/**/ Console.WriteLine($"{p.Name} ({p.Category.Name})");
 foreach (var po in p.ProductOrders)
 {
 Console.WriteLine($"\tRendelés: {po.Order.OrderDate}");
 }
/**/}

63

Ha nem akarunk minden oszlopot lekérdezni az összes érintett táblából, akkor a projekciós (select)
részt úgy is megírhatjuk, hogy csak a szükséges adatokat kérdezze le, ez az ún. query result shaping.

var products = ctx.Products.Select(p=> new
 {
 ProductName=p.Name,
 CategoryName=p.Category.Name,
 OrderDates= p.ProductOrders
 .Select(po=>po.Order.OrderDate)
 .ToArray()
 }
);

foreach (var p in products)
{
 Console.WriteLine($"{p.ProductName} ({p.CategoryName})");
 foreach (var po in p.OrderDates)
 {
 Console.WriteLine($"\tRendelés: {po}");
 }
}

Figyeljük meg, hogy a generálódó SELECT projekciós része így jóval rövidebb.


További ritkábban alkalmazott / korábbi verziókban elterjedt módszerek: explicit
loading, lazy loading.

Több-többes kapcsolat közvetlen navigálása
Lehetőség van több-többes kapcsolat navigálásakor a kapcsolótábla átugrására. Ehhez vegyünk fel
ennek megfelelő property-ket a kapcsolat két oldalán. Az Order-be:

public ICollection<Product> Products { get; } = new List<Product>();

A Product-ba:

public ICollection<Order> Orders { get; } = new List<Order>();

A kontext OnModelCreating-jében konfigurálnunk kell a több-többes kapcsolatban részt vevő minden
property-t, hogy az EF tudja, hogy ez az összes property ugyanazon kapcsolathoz tartozik:

modelBuilder.Entity<Product>()
.HasMany(p => p.Orders)
.WithMany(o => o.Products)
.UsingEntity<OrderItem>(

64

https://docs.microsoft.com/en-us/ef/core/querying/related-data/explicit
https://docs.microsoft.com/en-us/ef/core/querying/related-data/explicit
https://docs.microsoft.com/en-us/ef/core/querying/related-data/lazy

 j => j
 .HasOne(oi => oi.Order)
 .WithMany(o => o.OrderItems)
 .HasForeignKey(oi => oi.OrderId),
 j => j
 .HasOne(oi => oi.Product)
 .WithMany(p => p.ProductOrders)
 .HasForeignKey(oi => oi.ProductId),
 j =>
 {
 j.HasKey(oi => oi.Id);
 });

Bonyolultnak tűnik, de inkább csak hosszú, míg mind a 9 érintett property szerepét beállítjuk.

Mindennek nem szabadna adatbázis változást okoznia, hiszen nem lett több kapcsolat, csak egy
logikai útrövidítést vettünk fel. Ellenőrizzük le:

Add-Migration NxN

Ha mindent jól csináltunk, ennek egy üres migrációt kell generálnia. Töröljük is.

Remove-Migration

Ezután a korábbi lekérdezésünknél elhagyhatjuk az OrderItem betöltését.

var products = ctx.Products
 .Include(p => p.Category)
 .Include(p => p.Orders);

foreach (var p in products)
{
 Console.WriteLine($"{p.Name} ({p.Category.Name})");
 foreach (var po in p.ProductOrders)
 {
 Console.WriteLine($"\tRendelés: {po.Order.OrderDate}");
 }
}


Ettől nem feltétlenül lesz egyszerűbb vagy gyorsabb a generált lekérdezés, csak a
kódunk lesz egyszerűbb.

Módosítás, Find
Nézzünk példát egyszerű módosításra.

65

var pFirst = ctx.Products.Find(1);
if (pFirst != null)
{
 Console.WriteLine(ctx.Entry(pFirst).State);
 pFirst.UnitPrice *= 2;
 Console.WriteLine(ctx.Entry(pFirst).State);
 ctx.SaveChanges();
 Console.WriteLine(ctx.Entry(pFirst).State);
}

Debuggerrel sorról sorra lépkedve kövessük végig az EF változáskövető működését. A lekérdezések
eredménye alapértelmezetten bekerül a változáskövetőbe (change tracker). Ezután az osztályon
végezhetünk adatváltoztató műveletet, mindig könnyen eldönthető, hogy volt-e változás, ha
összevetjük az aktuális állapotot (current value) a bekerüléskorival (original value). Figyeljük meg,
hogyan kezeli az EF a hozzá tartozó objektumok állapotát.


Az Entry által adott osztályból megtudhatjuk az aktuális és a bekerüléskori
értékeket az OriginalValues és CurrentValues propertyk által.

A Find az elsődleges kulcs alapján keres ki egy entitást. Nem kell ismernünk az elsődleges kulcs
property nevét. Ha a változáskövetőbe már korábban bekerült a keresett entitás, akkor onnan
kapjuk vissza, ilyenkor adatbázishozzáférés nem történik.

Törlés
Töröljük ki az adatbázisból az egyik megrendelést.

var orderToRemove = ctx.Orders.OrderBy(o=>o.OrderDate).First();

ctx.Orders.Remove(orderToRemove);
ctx.SaveChanges();

Figyeljük meg az adatbázis adatai között, hogy az Order törlésével a kapcsolódó OrderItem
bejegyzések is törlődtek, mivel alapértelmezetten a sémán be van kapcsolva a kaszkád törlés. Ez
ebben az esetben indokolt is lenne, de sokszor nem szeretnénk, ha a kapcsolódó rekordok is
törlődnének. Ennek megakadályozására vegyük fel explicit a konfigurációban az Order-OrderItem
kapcsolatot és kapcsoljuk ki rajta a kaszkád törlést az OnModelCreating-ben.

// a korábbi több-többes konfiguráció
/**/j => j
/**/ .HasOne(oi => oi.Order)
/**/ .WithMany(o => o.OrderItems)
/**/ .HasForeignKey(oi => oi.OrderId) // , törölve
 .OnDelete(DeleteBehavior.Restrict),

A törölt Order-t és a szükséges kapcsoló rekordokat vegyük fel migráció által beszúrt adatként. Az

66

OnModelCreating végére:

modelBuilder.Entity<Order>().HasData(
 new Order {Id = 1, OrderDate = new DateTime(2019, 02, 01)}
);

modelBuilder.Entity<OrderItem>().HasData(
 new OrderItem { Id = 1, OrderId = 1, ProductId = 1 },
 new OrderItem { Id = 2, OrderId = 1, ProductId = 2 }
);

Fordítás után ne felejtsük el migrációval átvezetni az adatbázis sémájába is a változásokat.

Add-Migration ProductOrderRestrictDelete
Update-Database 0
Update-Database

Futtassuk újra a törlő kódot - kivételt kapunk, mivel az OrderItem rekord nem törlődött kaszkád
módon, így az egy már nem létező Order-re hivatkozik, viszont ez a külső kulcs kényszert megsérti.
Emiatt az egész törlési művelet meghiúsul.


Adatkezelő alkalmazásokban az adatbázisbeli törlés (SQL DELETE utasítás) helyett
gyakran inkább logikai törlést (soft delete) alkalmaznak. A logikai törlés
megvalósításával ezen gyakorlat keretében nem foglalkozunk.

Felsorolt típus, értékkonvertálók
Az EF alapértelmezetten képes a felsorolt típusokat is leképezni. Hozzunk létre új felsorolt típust a
Product osztály mellé ShipmentRegion néven.

[Flags]
public enum ShipmentRegion
{
 EU = 1,
 NorthAmerica = 2,
 Asia = 4,
 Australia = 8
}

A Flags attribútummal azt jelezzük, hogy szeretnénk a bitműveleteket is alkalmazni a felsorolt
értékére, így egy ShipmentRegion típusú változó egyszerre több értéket is felvehet (pl.: 3-as érték
egyszerre tartalmazza az EU-t és Észak-Amerikát is).

Vegyünk fel a Product osztályba egy új property-t az új felsorolt típussal.

67

https://www.thereformedprogrammer.net/ef-core-in-depth-soft-deleting-data-with-global-query-filters/

public ShipmentRegion? ShipmentRegion { get; set; }

Módosítsuk és bővítsük a kezdeti Product-ok listáját szállítási információkkal:

/**/modelBuilder.Entity<Product>().HasData(
/**/ new Product("Sör")
/**/ {
/**/ Id = 1, UnitPrice = 50, CategoryId = 1
 ,ShipmentRegion = ShipmentRegion.Asia
/**/ },
/**/ new Product("Bor") { Id = 2, UnitPrice = 550, CategoryId = 1 },
/**/ new Product("Tej") { Id = 3, UnitPrice = 260, CategoryId = 1 }
 ,new Product("Whiskey")
 {
 Id = 4,
 UnitPrice = 960,
 CategoryId = 1,
 ShipmentRegion = ShipmentRegion.Australia
 },
 new Product("Rum")
 {
 Id = 5,
 UnitPrice = 960,
 CategoryId = 1,
 ShipmentRegion = ShipmentRegion.EU | ShipmentRegion.NorthAmerica
 }
/**/);

Figyeljük meg a generált migrációban, hogy milyen ügyesen lekezeli az EF a korábbi migrációban
beszúrt elem (1-es Id) változását, módosító kódot generál hozzá.

Változott a modell, frissítsük az adatbázist.

Add-Migration ProductShipmentRegion
Update-Database

Figyeljük meg, hogy az új oszlop egész számként tárolja a felsorolt típus értékeit. Ha ez nem tetszik
nekünk, mert például szövegesen szeretnénk az adatbázisban látni az értékeket, használhatjuk az
értékkonvertálókat (value converter), melyek az adatbázis- és az objektummodell között képesek
oda-vissza konvertálni a leképezett elemek értékeit. Számos beépített konvertáló van az EF-ben,
melyek közül a leggyakoribbakat automatikusan alkalmaz is az EF, elég csak a céltípust
megadnunk. Az felsorolt típus - szöveg átalakító is ilyen. Az OnModelCreating-be:

modelBuilder
 .Entity<Product>()
 .Property(e => e.ShipmentRegion)

68

 .HasConversion<string>();

Változott a modell, frissítsük az adatbázist.

Add-Migration ProductShipmentRegionAsString
Update-Database



Ahogy a migráció generálásakor a figyelmeztetés is írja, ellenőrizzük a migrációt,
mert olyan oszlop típusát változtatjuk, amiben vannak már adatok, ez pedig
különös körültekintést igényel. A generált migráció nem is tökéletes, a Down részben
előbb állítja a migráció nvarchar-ról int-re az oszlop típusát, minthogy a szöveges
értéket számra (pontosabban számot tartalmazó szövegre) cserélné - így lefelé
migráláskor SQL hibát kapunk. Az UpdateData hívás AlterColumn hívás elé
helyezésével ezt javíthatjuk.

Ellenőrizzük a termékek táblájában, hogy sikerült-e az átalakítás. Kipróbálhatjuk, hogy működik-e a
konverzió objektummodell szinten is. A legfelső szintű kódban kérjük el az összes terméket:

var prods = ctx.Products.ToArray();

Vizsgáljuk meg a tömbben lévő termékeket debuggerrel: látható, hogy a szállítási területek
megfelelő értékűek.


Explicit is megadhatjuk az alkalmazandó konvertert, ami leggyakrabban a számos
beépített konverter közül kerül ki. Saját konvertereket is írhatunk, ha a beépítettek
között nem találunk megfelelőt.

Tranzakciók
Az EF az egyes SaveChanges hívásokat egy tranzakcióban futtatja (ha az adatbázis provider
támogatja azt). Viszont gyakran megesik az, hogy több SaveChanges hívást kellene egy tranzakcióban
kezelnünk. Tehát ha az egyik sikertelenül fut le, akkor a többit sem szabad érvényre juttatni.

Nézzünk példát a tranzakciókezelésre. Szúrjunk be több terméket az adatbázisba több SaveChanges
hívással.

int cid = ctx.Categories.First().Id;
try
{
 using (var transaction = ctx.Database.BeginTransaction())
 {
 ctx.Products.Add(new Product("Coca Cola")
 {
 CategoryId = cid,
 });

69

https://docs.microsoft.com/en-us/ef/core/modeling/value-conversions?tabs=data-annotations#built-in-converters
https://docs.microsoft.com/en-us/ef/core/modeling/value-conversions#the-valueconverter-class

 ctx.SaveChanges();
 ctx.Products.Add(new Product("Pepsi")
 {
 CategoryId = cid,
 });
 ctx.SaveChanges();
 transaction.Commit();
 }
}
catch (Exception){}

A tranzakciók kezdete-végével kapcsolatos események csak a debug szintű naplóban jelennek meg.
Állítsuk át a naplózási szintet a LogTo függvényben:

/**/.LogTo(Console.WriteLine, LogLevel.Debug); // LogLevel módosítva

A tranzakción Commit-ot hívunk, ha sikeresen lefutott mindegyik SaveChanges, ha valamelyik hibára
futott, akkor a using blokkból való kilépésig nem fog Commit hívódni. Ha bármilyen ok miatt a Commit
nem hívódik meg, legkésőbb a using blokk vége Rollback-kel lezárja a tranzakciót.

Próbáljuk ki! Ezesetben helyesen fut le a beszúrásunk. Figyeljük meg a konzolon a
tranzakciókezeléssel kapcsolatos üzeneteket.

Teszteljük a hibás ágat is azáltal, hogy a második terméket egy nem létező kategóriába próbáljuk
meg beszúrni.

/**/using (var transaction = ctx.Database.BeginTransaction())
/**/{
 ctx.Products.Add(new Product("Cider") //új név
/**/ {
/**/ CategoryId = cid,
/**/ });
/**/ ctx.SaveChanges();
 ctx.Products.Add(new Product("Kőműves KUBU") //új név
/**/ {
 CategoryId = 100, //nem létező CategoryId
/**/ });
/**/ ctx.SaveChanges();
/**/ transaction.Commit();
/**/}

Figyeljük meg, hogy ilyenkor nem kerül beszúrásra az első termék sem. Úgyszintén figyeljük meg a
konzolon a tranzakciókezeléssel kapcsolatos üzeneteket.

70

ASP.NET Core alapszolgáltatások

Projekt létrehozása
Ezen a gyakorlaton nem a beépített API projektsablont fogjuk felhasználni, hanem egy üres
ASP.NET Core projektből próbáljuk felépíteni és megérteni azt a funkcionalitást, amit egyébként az
előre elkészített VS projektsablonok adnának készen a kezünkbe.

Generálás

Hozzunk létre a Visual Studioban egy új, C# nyelvű projektet az ASP.NET Core Empty sablonnal, a
neve legyen HelloAspNetCore. Megcélzott keretrendszerként adjuk meg a .NET 6-ot. Minden extra
opció legyen kikapcsolva, a docker és a HTTPS is.

Kitérő: NuGet és a keretrendszert alkotó komponensek helye

A .NET 6 és az ASP.NET Core gyakorlatilag teljes mértékben publikusan elérhető komponensekből
épül fel. A komponensek kezelésének infrastruktúráját a NuGet csomagkezelő szolgáltatja. A
csomagkezelőn keresztül elérhető csomagokat a nuget.org listázza és igény esetén a NuGet kliens,
illetve a .NET Core eszközök (dotnet.exe, Visual Studio) is innen töltik le. A fejlesztőknek
teljesítményszempontból nem érné meg az alap keretrendszert alkotó csomagokat állandóan
letöltögetni, így a klasszikus keretrendszerekhez hasonlóan a .NET 6 telepítésekor egy könyvtárba
(Windows-on ide: C:\Program Files (x86)\dotnet, illetve C:\Program Files\dotnet) bekerülnek az
alap keretrendszert alkotó komponensek - lényegében egy csomó .dll különböző alkönyvtárakban.
A futtatáshoz szükséges szerelvények a shared alkönyvtárba települnek, ezek az ún. Shared
Framework-ök. A gépen futó különböző .NET Core/6 alkalmazások közösen használhatják ezeket. A
fejlesztéshez az alapvető függőségeket a packs alkönyvtárból hivatkozhatjuk.

Nem fejlesztői, például végfelhasználói vagy szerver környezetben- ahol nem is biztos, hogy fel van
telepítve az SDK, nem feltétlenül így biztosítjuk a függőségeket, de ennek a boncolgatása nem
témája ennek a gyakorlatnak.

Eredmény

Nézzük meg, milyen projekt generálódott:

• .csproj: (Projekten jobb gomb › Edit Project File) a projekt fordításához szükséges
beállításokat tartalmazza. Előző verziókhoz képest itt erősen építenek az alapértelmezett
értékekre, hogy minél karcsúbbra tudják fogni ezt az állományt.

◦ Project SDK: projekt típusa (Microsoft.NET.Sdk.Web), az eszközkészlet funkcióit
szabályozza, meghatározza a futtatáshoz használatos shared framework-öt, illetve
meghatározza a megcélzott keretrendszert is(lásd lentebb).

◦ TargetFramework: net6.0. Ezzel jelezzük, hogy .NET 6-os API-kat használunk az
alkalmazásban.

• Connected Services: külső szolgáltatások, amiket használ a projektünk, most nincs ilyenünk.

• Dependencies: a keretrendszer alapfüggőségei és egyéb NuGet csomagfüggőségek szerepelnek

71

https://www.nuget.org/
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/web-sdk

itt. Egyelőre csak keretrendszer függőségeink vannak.

◦ Frameworks: két alkönyvtárat (Microsoft.AspNetCore.App, Microsoft.NETCore.App)
hivatkozunk a .NET SDK packs alkönyvtárából. Ezek a függőségek külső NuGet csomagként
is elérhetőek, de ahogy fentebb jeleztük, nem érdemes úgy hivatkozni őket.

◦ Analyzers: speciális komponensek, amik kódanalízist végzenek, de egyébként ugyanúgy
külső függőségként (NuGet csomag) kezelhetjük őket. Ha kibontjuk az egyes analizátorokat,
akkor láthatjuk, hogy miket ellenőriznek. Ezek a függőségek a futáshoz nem szükségesek.

• Properties: duplakattra előjön a klasszikus projektbeállító felület.

◦ launchSettings.json: a különböző indítási konfigurációkhoz tartozó beállítások (lásd
később).

• appsettings.json: futásidejű beállítások helye. Kibontható, kibontva a különböző környezetekre
specifikus konfigurációk találhatóak (lásd később).

Legfelső szintű kód, minimál API

Az előző ASP.NET verzióval ellentétben, itt már az ASP.NET Core alkalmazások a születésüktől fogva
klasszikus konzolos alkalmazásként is indíthatók, ekkor az alkalmazás alapértelmezett belépési
pontja a legfelső szintű kód (esetleg a Main metódus). Az ASP.NET Core 6-os verzióban megjelent ún.
minimál API segítségével már nem csak a konfigurációt tartalmazhatja ez a kód, hanem (egyszerű)
kiszolgáló logikát is.

Esetünkben a következő lépéseket végzi el a generált kód:

• a hosztolási környezetet és az alkalmazás alapszolgáltatásait konfiguráló builder objektum
összeállítása (CreateBuilder függvényhívás)

• a builder objektum alapján a hosztolási környezet és az alkalmazás szerkezetének felállítása
(Build függvényhívás)

• végpontot definiál az alkalmazás gyökércímére minimál API segítségével. A végpont a
meghívására a Hello World! szöveget adja vissza.

• a felállított szerkezet futtatása (Run függvényhívás)

Az igazán munkás feladat a builder megalkotása lenne, igen sok mindent lehetne benne
konfigurálni, ez a kódban a CreateBuilder-ben történik, ami egy szokványos, az egész
webalkalmazás működési környezetét meghatározó beállításokat elvégző kiinduló buildert állít elő.
Ha valamit a kiinduló builderben megadottól eltérően szeretnénk, vagy új beállításokat adnánk
meg, akkor a kiinduló builder objektumon történő függvényhívásokkal tehetnénk meg.

Mivel a kiinduló builderen nem végzünk semmilyen utólagos konfigurálást, így akár egy utasítással
is megkaphatnánk az alkalmazásszerkezetet reprezentáló WebApplication példányt.

//var builder = WebApplication.CreateBuilder(args);
//var app = builder.Build();

var app = WebApplication.Create();

72

Végrehajtási pipeline, middleware-ek
Az ASP.NET Core-ban egy kérés kiszolgálása úgy történik, hogy a kérés egy csővezetéken halad
(végig). A csővezeték middleware-ekből (MW) áll. Az alábbi ábra szemlélteti a middleware pipeline
működését.

Forrás: https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middleware

Az ASP.NET Core alkalmazás alapszerkezete, hogy a befutó HTTP kérés (végig)fusson a middleware-
ekből álló csővezetéken és valamelyik (alapesetben az utolsó) middleware előállítja a választ, ami
visszairányban halad végig a csővezetéken. A csővezeték adja tehát az alkalmazás szerkezetét. A
kiinduló csővezetéket a WebApplication.Create vagy a builder.Build építi fel, ezt utána app.UseX (X=
MW neve) hívásokkal testreszabhatjuk, kiegészíthetjük.

Esetünkben a kiinduló csővezetékben három MW van:

• kivételkezelő middleware (UseDeveloperExceptionPage), ami az őt követő middleware-ek hibáit
képes elkapni és ennek megfelelően egy a fejlesztőknek szóló hibaoldalt jelenít meg. Ez csak
opcionálisan kerül beregisztrálásra attól függően, hogy most éppen Development módban
futtatjuk-e az alkalmazást vagy sem. (lásd később)

• routing middleware (UseRouting), aminek a feladata, hogy a bejövő kérés és a végpontok (lásd
lentebb) által adott információk alapján kitalálja, hogy melyik endpoint felé továbbítsa a bejövő
kérést.

• végpontok middleware (UseEndpoints), ami a kiválasztott endpoint definíciójában megadott
logika tényleges lefuttatásáért felel


A kiinduló csővezeték regisztrálását megfigyelhetjük a WebApplicationBuilder
forráskódjában - keressük az app.UseX sorokat.

73

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middleware
https://github.com/dotnet/aspnetcore/blob/c911002ab43b7b989ed67090f2a48d9073d5118d/src/DefaultBuilder/src/WebApplicationBuilder.cs#L232
https://github.com/dotnet/aspnetcore/blob/c911002ab43b7b989ed67090f2a48d9073d5118d/src/DefaultBuilder/src/WebApplicationBuilder.cs#L232
https://github.com/dotnet/aspnetcore/blob/c911002ab43b7b989ed67090f2a48d9073d5118d/src/DefaultBuilder/src/WebApplicationBuilder.cs#L232

A kiinduló projekt nem változtat a kiinduló csővezetéken, csak egy végpont definíciót ad meg
(app.MapGet sor).


A middleware-ek sorrendje fontos. Ha nem megfelelő sorrendben regisztráljuk
őket, nem megfelelő működés lehet az eredmény. A dokumentáció általában
tartalmazza, hogy melyik middleware hova illeszthető be.

Hosztolási lehetőségek a fejlesztői gépen
Próbáljuk ki IIS Expressen keresztül futtatva, azaz a VS-ben az indítógomb (zöld nyíl) mellett az IIS
Express felirat legyen! Ha nem ez a felirat van, állítsuk át az indítógomb jobb szélén lévő menüt
lenyitva.

Két dolog is történik: az alkalmazásunk IIS Express webkiszolgálóban hosztolva kezd futni és egy
böngésző is elindul, hogy ki tudjuk próbálni. Figyeljük meg az értesítési területen (az óra mellett)

megjelenő IIS Express ikont () és azon jobbklikkelve a hosztolt alkalmazás címét (jobbklikk ›
Show All Applications).

A böngésző az alkalmazás gyökércímére navigál (a cím csak localhost:port-ból áll), így a Hello
World! szöveg jelenik meg.

 A indítógomb legördülőjében a böngésző típusát is állíthatjuk.


Az IIS Express a Microsoft webszerverének (IIS) fejlesztői célra optimalizált
változata. Alapvetően csak ugyanarról a gépről érkező (localhost) kéréseket szolgál
ki.

A másik lehetőség, ha közvetlenül a konzolos alkalmazást szeretnénk futtatni, akkor ezt az
indítógombot lenyitva a projekt nevét kiválasztva tehetjük meg. Ebben az esetben egy beágyazott
webszerverhez (Kestrel) futnak be a kérések. Próbáljuk ki a Kestrelt közvetlenül futtatva!

Most is két dolog történik: az alkalmazásunk konzolos alkalmazásként kezd futni, illetve az előző
esethez hasonlóan a böngésző is elindul. Figyeljük meg a konzolban megjelenő naplóüzeneteket.



Bár ezek a hosztolási opciók fejlesztői környezetben nagyon kényelmesek, érdemes
áttekinteni az éles hosztolási opciókat itt. A Kestrel ugyan jelenleg már alkalmas
arra, hogy kipublikáljuk közvetlenül a világhálóra, de mivel nem rendelkezik
olyan széles konfigurációs és biztonsági beállításokkal, mint a már bejáratott
webszerverek, így érdemes lehet egy ilyen webszervert a Kestrel elé rakni proxy
gyanánt, például az IIS-t vagy nginx-et.

Rakjunk most a kiszolgáló logikánkba egy kivétel dobást a kiírás helyett, hogy kipróbáljuk a
hibakezelő MW-t.

/**/app.MapGet("/", () =>
 {
 throw new Exception("hiba");

74

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middleware#built-in-middleware
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers

 //"Hello World!"
 }
/**/);

Próbáljuk ki debugger nélkül (Ctrl  +  F5)!

Láthatjuk, hogy a kivételt a hibakezelő middleware elkapja és egy hibaoldalt jelenítünk meg, sőt
még a konzolon is megjelenik naplóbejegyzésként.

Alkalmazásbeállítások vs. indítási profilok
Figyeljük meg, hogy most Development konfigurációban fut az alkalmazás (konzolban a Hosting
environment kezdetű sor). Ezt az információt a keretrendszer környezeti változó alapján állapítja
meg. Ha a lauchSettings.json állományt megnézzük, akkor láthatjuk, hogy az
ASPNETCORE_ENVIRONMENT környezeti változó Development-re van állítva.

Próbáljuk ki Visual Studio-n kívülről futtatni. Projekten jobb klikk › Open Folder in File
Explorer. Ezután a címsorba mindent kijelölve cmd  +  Enter , a parancssorba dotnet run.

Ugyanúgy fog indulni, mint VS-ből, mert az újabb .NET Core verziókban már a dotnet run is
figyelembe veszi a launchSettings.json-t. A böngészőt magunknak kell indítani (most még) és
elnavigálni a naplóban szereplő címre (Now listening on: http://localhost:port üzenetet
keressünk).

Ha nem akarjuk ezt, akkor a --no-launch-profile kapcsolót használhatjuk a dotnet run futtatásánál.

Most az alkalmazásunk Production módban indul el, és ha a localhost:5000-es oldalt megnyitjuk a
böngészőben, akkor nem kapunk hibaoldalt, de a konzolon továbbra is megjelenik a
naplóbejegyzés.

 A dotnet run futását CTRL  +  C -vel állíthatjuk le.



A konzolban a setx ENV_NAME Value utasítással tudunk felvenni környezeti változót
úgy, hogy az permanensen megmaradjon, és ne csak a konzolablak bezárásáig
maradjon érvényben. (Admin/nem admin, illetve powershell konzolok
különbözőképpen viselkednek)

Az eredeti logikánkat kommentezzük vissza.

/**/app.MapGet("/", () =>
/**/{
 //throw new Exception("hiba"); //kikommentezve
 "Hello World!"; //komment levéve és ; hozzáadva
/**/});

Az alkalmazás számára a különböző beállításokat JSON állományokban tárolhatjuk, amelyek akár
környezetenként különbözőek is lehetnek. A generált projektünkben ez az appsettings.json,

75

https://github.com/dotnet/sdk/issues/9038
http://localhost:port
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/setx

nézzünk bele - főleg naplózási beállítások vannak benne. A fájl a Solution Explorer ablakban
kinyitható, alatta megtaláljuk az appsettings.Development.json-t. Ebben a Development nevű
konfigurációra vonatkozó beállítások vannak. Alapértelmezésben az appsettings.<indítási
konfiguráció neve>.json beállításai jutnak érvényre, felülírva a sima appsettings.json egyező
értékeit (a pontosabb logikát lásd lentebb).

Állítsunk Development módban részletesebb naplózást. Az appsettings.Development.json-ben
minden naplózási szintet írjunk Debug-ra.

{
 "Logging": {
 "LogLevel": {
 "Default": "Debug",
 "Microsoft.AspNetCore": "Debug"
 }
 }
}

 A naplózási szintek sorrendje itt található.

Próbáljuk ki, hogy így az alkalmazásunk futásakor minden böngészőbeli frissítésünk (F5)
megjelenik a konzolon.

VS-ből is tudjuk állítani a környezeti változókat, nem kell a launchSettings.json-ben kézzel
varázsolni. A projekt tulajdonságok Debug lapján az Open debug launch profiles UI szövegre
kattintva egy dialógusablak ugrik fel, itt tudunk új indítási profilt megadni, illetve a meglévőeket
módosítani. Válasszuk ki az aktuálisan használt profilunkat (projektneves), majd írjuk át az
ASPNETCORE_ENVIRONMENT környezeti változó értékét az Environment Variables részen mondjuk
Production-re.

Indítsuk ezzel a profillal és figyeljük meg, hogy már nem jelennek meg az egyes kérések a
naplóban, bárhogy is frissítgetjük a böngészőt. Oka: nincs appsettings.Production.json, így az
általános appsettings.json jut érvényre.


Parancssorban a dotnet run --launch-profile [profilnév] kapcsolóval adhatjuk meg
az indítási profilt.



Számos forrásból lehet konfigurációt megadni: parancssor, környezeti változó, fájl
(ezt láttuk most), felhő (Azure Key Vault) stb. Ezek közül többet is használhatunk
egyszerre, a különböző források konfigurációja a közös kulcsok mentén
összefésülődik. A források (configuration provider-ek) között sorrendet adhatunk
meg, amikor regisztráljuk őket, a legutolsóként regisztrált provider konfigurációja
a legerősebb. Az alapértelmezett provider-ek regisztrációját elintézi a korábban
látott kiinduló builder.

76

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/logging#configure-logging

Statikus fájl MW

Hozzunk létre a projekt gyökerébe egy wwwroot nevű mappát (jobbklikk a projekten › Add › New
Folder) és tegyünk egy képfájlt bele. (Ellophatjuk pl. a http://www.bme.hu honlap bal felső sarkából
a logo-t)

A statikus fájlkezelést a teljes modularitás jegyében egy külön middleware-ként implementálták a
Microsoft.AspNetCore.StaticFiles osztálykönyvtárban (az AspNetCore.App már függőségként
tartalmazza, így nem kell külön hivatkoznunk), csak hozzá kell adnunk a pipeline-hoz.

 app.UseStaticFiles();
/**/app.MapGet("/", () => "Hello World!");

Próbáljuk ki! Láthatjuk hogy a localhost:port címen még mindig a Hello World! szöveg tűnik fel, de
amint a localhost:port/[képfájlnév]-vel próbálkozunk, a kép töltődik be. A static file MW megszakítja
a pipeline futását, ha egy általa ismert fájltípusra hivatkozunk, egyébként továbbhív a következő
MW-be. Az ilyen MW-eket ún. termináló MW-eknek hívjuk.


Ezt az egysoros endpoint logikára tett törésponttal is szemléltethetjük. Figyeljünk
arra, hogy csak a Hello World! szövegre kerüljön a töréspont és ne az egész MapGet
sorra, illetve csak akkor nézzük, hogy mi fut le, amikor a kép URL-re hívunk.

Web API
Minden API-nál nagyon magas szinten az a cél, hogy egy kérés hatására egy szerveroldali
kódrészlet meghívódjon. ASP.NET Core-ban a kódrészleteket függvényekbe írjuk, a függvények
pedig ún. kontrollerek-be kerülnek. Egy controller általában az egy erőforrástípushoz kapcsolódó
műveleteket fogja össze. Összességében tehát a cél, hogy a webes kérés hatására egy kontroller egy
függvénye meghívódjon.

DummyController

Hozzunk létre egy új mappát Controllers néven. A mappába hozzunk létre egy kontrollert

(jobbklikk a Controllers mappán › Add › Controller… › a bal oldali fában Common › API › jobb
oldalon API Controller with read/write actions) DummyController néven. A generált kontrollerünk
a Microsoft.AspNetCore.Mvc.Core csomagban található ControllerBase osztályból származik. (Ezt a
csomagot sem kell feltennünk, mivel az AspNetCore.App függősége)

Adjuk hozzá a szolgáltatásokhoz a kontrollertámogatás szolgáltatást, és adjuk hozzá a
csővezetékhez a kontroller kezelő MW-t. Az egysoros MW-t kommentezzük ki. Így néz ki a teljes
legfelső szintű kód:

var builder = WebApplication.CreateBuilder(args);
builder.Services.AddControllers(); ①
var app = builder.Build();
//var app = WebApplication.Create(); ②
app.UseStaticFiles();

77

http://www.bme.hu

//app.MapGet("/", () => "Hello World!"); ③
app.MapControllers();
app.Run();

① Kontrollertámogatás szolgáltatás regisztrálása

② Mivel kell a kiinduló builder, így ezt az egysoros app inicializációt nem alkalmazhatjuk

③ Egysoros MW kikommentezve

Próbáljuk ki. Az alapoldal üres, viszont ha az /api/Dummy címre hívunk, akkor megjelenik a
DummyController.Get által visszaadott érték. A routing szabályok szabályozzák, hogy hogyan jut el a
HTTP kérés alapján a végrehajtás a függvényig. Itt attribútum alapú routing-ot használunk, azaz a
kontroller osztályra és a függvényeire biggyesztett attribútumok határozzák meg, hogy a HTTP
kérés adata (pl. URL) alapján melyik függvény hívódik meg.

A DummyController osztályon lévő Route attribútum az "api/[controller]" útvonalat definiálja,
melyből a [controller] úgynevezett token, ami jelen esetben a controller nevére cserélődik. Ezzel
összességében megadtuk, hogy az api/Dummy útvonal a DummyController-t választja ki, de még nem
tudjuk, hogy a függvényei közül melyiket kell meghívni - ez a függvényekre tett attribútumokból
következik. A Get függvényen levő HttpGet mutatja, hogy ez a függvény akkor hívandó, ha a GET
kérés URL-je nem folytatódik - ellentétben a Get(int id) függvénnyel, ami az URL-ben még egy
további szegmenst vár (ezért van egy "{id}" paraméter megadva az attribútum konstruktorban),
amit az id nevű függvényparaméterként használ fel.



API-t publikáló alkalmazásoknál az attribútum alapú routing az ajánlott, de
emellett vannak más megközelítések is, például Razor alapú weboldalaknál
konvenció alapú routing az ajánlott. Bővebben a témakörről általánosan itt, illetve
specifikusan webes API-k vonatkozásában itt lehet olvasni. A dokumentáció
mennyiségéből látható, hogy a routing alrendszer nagyon szofisztikált és sokat tud,
szerencsére az alap működés elég egyszerű és gyorsan megszokható.

Ha van időnk, próbáljuk ki az /api/Dummy/[egész szám] címet is. A Get(int id) függvény kódjának
megfelelően, bármit adunk meg, az eredmény a value szöveg lesz.

Típusos beállítások, IOptions<T>
Fentebb láttuk, hogy a konfigurációt ki tudtuk olvasni az IConfiguration interfészen keresztül, de
még jobb lenne, ha csoportosítva és csoportonként külön C# osztályokon keresztül látnánk őket.

Bővítsük az appsettings.json-t egy saját beállításcsoporttal (DummySettings):

/**/{
/**/ "Logging": {
/**/ "LogLevel": {
/**/ "Default": "Information",
/**/ "Microsoft": "Warning",
/**/ "Microsoft.Hosting.Lifetime": "Information"
/**/ }

78

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/routing
https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/routing#attribute-routing-for-rest-apis

/**/ },
 "AllowedHosts": "*", // a sor végére bekerült egy vessző
 "DummySettings": {
 "DefaultString": "My Value",
 "DefaultInt": 23,
 "SuperSecret": "Spoiler Alert!!!"
 }
/**/}

Hozzunk létre egy új mappát Options néven. A mappába hozzunk létre egy sima osztályt
DummySettings néven, a szerkezete feleljen meg a JSON-ben leírt beállításcsoportnak:

public class DummySettings
{
 public string? DefaultString { get; set; }

 public int DefaultInt { get; set; }

 public string? SuperSecret { get; set; }
}

Regisztráljuk szolgáltatásként a DummySettings kezelését, és adjuk meg, hogy a példányt mi alapján
kell inicializálni - a konfiguráció megfelelő szekciójára hivatkozzunk:

/**/builder.Services.AddControllers();
 builder.Services.Configure<DummySettings>(
 builder.Configuration.GetSection(nameof(DummySettings)));

A builder.Services-ben regisztrált szolgáltatások valójában egy dependency injection (DI)
konténerbe kerülnek regisztrálásra. Ez többek között lehetővé teszi, hogy az alkalmazáson belül
konstruktorban paraméterként igényeljük a szolgáltatást. A paraméter értékét a DI alrendszer
automatikusan tölti ki a regisztrált szolgáltatások alapján.



ASP.NET Core környezetben (is) törekedjünk arra, hogy lehetőleg minden
osztályunk minden függőségét a DI minta szerint a DI konténer kezelje. Ez
nagyban hozzájárul a komponensek közötti laza csatolás és a jobb tesztelhetőség
eléréséhez. Bővebb információ az ASP.NET Core DI alrendszeréről a
dokumentációban található.

Igényeljünk DummySettings-t a DummyController konstruktorban:

private DummySettings options;

public DummyController(IOptions<DummySettings> options)
{
 this.options = options.Value;

79

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection

}



Látható, hogy a beállítás IOptions-ba burkolva érkezik. Vannak az IOptions-nál
okosabb burkolók is (pl. IOptionsMonitor), ami például jelzi, ha megváltozik
valamilyen beállítás. Bővebb információ az IOptions és társairól a hivatalos
dokumentációban található.

Az egész számot váró Get változatban használjuk fel az értékeket:

/**/[HttpGet("{id}")]
/**/public string Get(int id)
/**/{
 return id % 2 == 0 ? (options.DefaultString ?? "value") : options.DefaultInt
.ToString();
/**/}

Próbáljuk ki, hogy az /api/Dummy/[páros szám], illetve /api/Dummy/[páratlan szám] végpontok
meghívásakor a megfelelő értéket kapjuk-e vissza.

User Secrets
A projekt könyvtára gyakran valamilyen verziókezelő (pl. Git) kezelésében van. Ilyenkor gyakori
probléma, hogy a konfigurációs fájlokba írt szenzitív információk (API kulcsok, adatbázis jelszavak)
bekerülnek a verziókezelőbe. Ha egy publikus projekten dolgozunk, például publikus GitHub
projekt, akkor ez komoly biztonsági kockázat lehet.


Ne tegyünk a verziókezelőbe szenzitív információkat. Gondoljunk arra is, hogy a
verziókezelő nem felejt! Ami egyszer már bekerült, azt vissza is lehet nyerni belőle
(history).

Ennek a problémának megoldására egy eszköz a User Secrets tároló. Jobbklikkeljünk a projekten a
Solution Explorer ablakban, majd válasszuk a Manage User Secrets menüpontot. Ennek hatására
megnyílik egy secrets.json nevű fájl. Vizsgáljuk meg, hol is van ez a fájl: vigyük az egeret a fájlfül
fölé - azt láthatjuk, hogy a fájl a felhasználónk saját könyvtárán belül van és az útvonal része egy
GUID is. A projektfájlba (.csproj) bekerült ugyanez a GUID (a UserSecretsId címkébe).

Másoljuk át az appsettings.json tartalmát a secrets.json-be, vegyük ki a DummySettings-en kívüli
részeket, végül írjuk át a titkos értéket (SuperSecret):

{
 "DummySettings": {
 "DefaultString": "My Value",
 "DefaultInt": 23,
 "SuperSecret": "SECRET"
 }
}

80

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration/options

Töréspontot letéve (pl. a DummyController konstruktorának végén) ellenőrizzük, hogy a titkos érték
melyik fájlból jön. Ehhez meg kell hívnunk böngészőből az api/dummy címet.


Fontos tudni, hogy a User Secrets tároló csak Development mód esetén jut
érvényre, így figyeljünk rá, hogy a megfelelő módot indítsuk és a környezeti
változók is jól legyenek beállítva.

Ez az eljárás tehát a futtató felhasználó saját könyvtárából a GUID alapján kikeresi a projekthez
tartozó secrets.json-t, annak tartalmát pedig futás közben összefésüli az appsettings.json
tartalmával. Így szenzitív adat nem kerül a projekt könyvtárába.



Mivel a User Secrets tároló csak Development mód esetén jut érvényre, így ha az
éles változatnak szüksége van ezekre a titkos értékekre, akkor további trükkökre
van szükség. Ilyen megoldás lehet, ha a felhős hosztolás esetén a felhőből (pl.
Azure App Service Configuration) vagy felhőbeli titoktárolóból (pl. Azure Key
Vault) vagy a DevOps eszközből (pl. Azure DevOps Pipeline Secrets) töltjük be a
szenzitív beállításokat.

Epilógus - WebApplicationBuilder
Az eddigiekből látható, hogy számos alapszolgáltatás már a CreateBuilder hívás által visszaadott
kiinduló builderben konfigurálva van. Ilyen az alap (IOptions nélküli) alkalmazásbeállítások
kezelése vagy a naplózás. A CreateBuilder a WebApplicationBuilder internal konstruktorát hívja.

A WebApplicationBuilder elődje az IWebHostBuilder, ez utóbbinak a dokumentációját tanulmányozva
érthetjük meg, hogy mi mindent tud a kiinduló builder.

81

https://docs.microsoft.com/en-us/azure/app-service/configure-common#configure-app-settings
https://docs.microsoft.com/en-us/aspnet/core/security/key-vault-configuration
https://docs.microsoft.com/en-us/aspnet/core/security/key-vault-configuration
https://docs.microsoft.com/en-us/azure/devops/pipelines/process/variables?view=azure-devops&tabs=yaml%2Cbatch#secret-variables
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/web-host

ASP.NET Core webszolgáltatások I.-II.

Kiegészítő anyagok, segédeszközök
• kapcsolódó GitHub repo: https://github.com/bmeaut/WebApiLab

◦ elég csak zip-ként letölteni, nem kell klónozni

• Postman vagy Fiddler Classic HTTP kérések küldéséhez

Kiinduló projektek beüzemelése
A kiinduló solution két .NET 6 osztálykönyvtárat foglal magába, melyek egy N-rétegű architektúra
egy-egy rétegét valósítják meg:

• WebApiLab.Dal: lényegében az Entity Framework gyakorlatok anyagát tartalmazza, ez az
adatelérési rétegünk.

◦ entitásdefiníciók

◦ kontext, modellkonfigurációval, kezdeti adatokkal

◦ connection string kezelés és SQL naplózás a korábbi gyakorlatok alapján

◦ migráció (még) nincs

• WebApiLab.Bll: ezt szánjuk az üzleti logikai rétegnek. Fő feladata, hogy a DAL-ra építve
végrehajtsa az Interfaces mappában definiált műveleteket.

◦ Interfaces - ez a BLL réteg specifikációja

◦ Services - ide kerülnek majd az üzleti logikát, ill. az interfészeket megvalósító osztály(ok)

◦ Dtos - csak később lesz szerepük, egyelőre nincsenek használva

◦ Exceptions - saját kivétel osztály, egyelőre nincs használva

Adjunk hozzá a solution-höz egy új C# nyelvű web API projektet (ASP.NET Core Web API, nem pedig
Web App), a neve legyen WebApiLab.Api.

A következő dialógusablakban válasszuk ki a .NET 6 opciót. Az extrák közül ne kérjük ezeket:
HTTPS, Docker, authentikáció. Viszont hagyjuk bepipálva a Controller és az OpenAPI támogatást. A
generált projektből törölhetjük a minta API fájljait, azaz a Weather kezdetű fájlokat a projekt
gyökeréből és a Controllers mappából.

Adjuk hozzá függőségként:

• a BLL projektet (projekten jobbklikk › Dependencies › Add Project Reference…)

• a Microsoft.EntityFrameworkCore.Tools NuGet csomagot. Válasszunk olyan verziót, ami egyezik
a DAL projekt Entity Framework Core függőségének verziójával.


Olyan csomagoknál, ahol a verziószámozás követi az alap keretrendszer
verziószámozását, törekedjünk arra, hogy a csomagok verziói konzisztensek
legyenek egymással és a keretrendszer verziójával is - akkor is, ha egyébként a

82

https://github.com/bmeaut/WebApiLab
https://github.com/bmeaut/WebApiLab/archive/refs/heads/master.zip
https://www.getpostman.com/
https://www.telerik.com/download/fiddler

függőségi szabályok engednék a verziók keverését. Ha a projektünk például .NET
6-os keretrendszert használ, akkor az Entity Framework Core és egyéb extra
ASP.NET Core csomagok közül is olyan verziót válasszunk, ahol legalább a főverzió
egyezik, tehát valamilyen 6.x verziót. Ez nem azt jelenti, hogy az inkonzisztens
verziók mindig hibát eredményeznek, inkább a projekt általában stabilabb, ha a
főverziók közötti váltást egyszerre, külön migrációs folyamat (példa) keretében
végezzük.

Az EF bekötése az ASP.NET Core DI, naplózó,
konfiguráló rendszereibe
A kontext konfigurálása az EF gyakorlat során - mivel ott egy sima konzol alkalmazást írtunk - a
kontext OnConfiguring függvényében történt. Mivel az ASP.NET Core projekt DI rendszert is ad,
érdemes a kontextet a DI rendszerbe regisztrálni, hogy a projekten belül a modulok/osztályok
függőségként tudják használni. A regisztrálás a legfelső szintű kódban történik (lásd ASP.NET Core
bevezető gyakorlatot).

A kontext regisztrálása a legfelső szintű kódban a DI konténerbe:

builder.Services.AddDbContext<AppDbContext>(o =>
 o.UseSqlServer(builder.Configuration.GetConnectionString("DefaultConnection")));

Az EF naplózást az ASP.NET Core naplózó rendszere végzi, amit a kiinduló builder már inicializál,
így ezzel kapcsolatban nincs teendőnk. Viszont egy új kontext konstruktorra lesz szükségünk, ami
DbContextOptions<AppDbContext>-et vár.

A kontext OnConfiguring-jára pedig nincs szükség, úgyhogy töröljük ki, helyére tegyük az új
konstruktort:

public AppDbContext(DbContextOptions<AppDbContext> options)
 : base(options)
{
}

Az Entity Framework gyakorlat alapján hozzunk létre egy új LocalDB adatbázist egy választott
névvel, pl. neptun kód, northwind, stb. Az SQL Server Object Explorer-ből a connection string-et

lopjuk el. (nyissuk le az adatbáziskapcsolatot › jobbklikk az adatbázison › Properties › a
Properties ablakból a Connection String értéke).

Az appsettings.Development.json-ba vegyük fel a connection string-et és a generált SQL
megfigyeléséhez a Microsoft kategóriájú naplók minimum szintjét csökkentsük Information-re.

/**/{
/**/ "Logging": {
/**/ "LogLevel": {

83

https://learn.microsoft.com/en-us/aspnet/core/migration/31-to-60

/**/ "Default": "Information",
 "Microsoft": "Information",
/**/ }
 }, //vessző bekerült
 "ConnectionStrings": {
 "DefaultConnection": "<connection string>"
 }
/**/}



Kukac (@) ilyenkor nem kell a connection string elé, mert ez JSON. Az
adatbáziskapcsolatot azért kellhet lenyitni, hogy az SQL Server Object Explorer
csatlakozzon is az új adatbázishoz, ezután tudjuk megszerezni a connection
stringet.



A connection string különleges karaktereit a beillesztés után a VS alapesetben
automatikusan escape-eli. Ha az automatikus escape-elés mégsem történik meg,
manuálisan kell ezt megtennünk, különben A network-related or instance-specific
error occurred while establishing a connection to SQL Server hibát kaphatunk.

Adatbázis inicializálása Code-First migrációval

Fordítsuk a teljes solution-t, állítsuk be indítandó (startup) projektnek az új Web API projektet

(jobbklikk a projekten › Set as Startup Project). A Package Manager Console-t nyissuk meg, és
állítsuk be Default Project-ként a DAL projektet. Készíttessük el a migrációt és futtassuk is le.

Add-Migration Init
Update-Database



Fontos, hogy a fenti parancs két projektet ismerjen: azt, amelyikben a kontext van,
ill. a kontextet használó futtatható projektet. A VS Package Manager Console-jában
futtatva alapértelmezésben az előbbit a Default Project értéke adja meg, utóbbit az
indítandó projekt. Továbbá ezeket a projekteket meg lehet adni paraméterként is.


Itt mutatkozik meg, hogy a migráció lényegében egy teljes alkalmazásindítást
jelent a Program osztályon keresztül: inicializálódik a DI konténer, a konfigurációs
objektum stb.

Ellenőrizzük az SQL Server Object Explorer-ben, hogy rendben lefutott-e a migráció, létrejöttek-e az
adatbázis objektumok, feltöltődtek-e a táblák.

EF entitások használata az API felületen
Bár architektúra szempontból nem a legszebb, a BLL réteget gyakorlatilag mellőzve közvetlenül is
használhatjuk az EF entitásokat a kontrollerek megvalósításánál. Ehhez használhatjuk a Visual
Studio Entity Framework-ös Controller sablonjait.

84

https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/powershell#common-parameters

Adjuk hozzá az API projekthez a Microsoft.VisualStudio.Web.CodeGeneration.Design NuGet
csomagot. Válasszunk olyan verziót, ami egyezik a DAL projekt Entity Framework Core
függőségének verziójával.

PMC-ben telepítsük az ASP.NET Core kódgeneráló eszközt

dotnet tool install -g dotnet-aspnet-codegenerator

Majd lépjünk be a projekt könyvtárába

cd .\WebApiLab.Api

Végül generáljunk a kódgenerálóval REST API (-api) kontrollert a Product entitáshoz (-m), mely az
AppDbContext kontextushoz (-dc) tartozik. A generált osztály neve legyen EFProductController (-name),
a WebApiLab.Api.Controllers névtérbe (-namespace) kerüljön. A generált fájl a Controllers mappába (
-outDir) kerüljön.

dotnet aspnet-codegenerator controller -m WebApiLab.Dal.Entities.Product -dc
WebApiLab.Dal.AppDbContext -outDir Controllers -name EFProductController -namespace
WebApiLab.Api.Controllers -api


Figyeljünk rá, hogy ne a Dtos névtérből adjuk meg a DTO típust a tényleges
entitástípus helyett.


A generálás során Unable to create an object of type 'AppDbContext'. hibát
kaphatunk. A hiba a kódgeneráló eszközben keresendő, a kapcsolódó GitHub issue-
ban találunk egy lehetséges megoldást is a problémára.

A legenerálódó kontroller már használható is. Állítsuk át a zöld nyíl mellett az indítási konfigurációt
a projektnevesre, hogy ne IIS Express induljon és így lássuk a konzolon a naplót. Indítsuk a
projektet és próbáljuk például lekérni az összes terméket az api/efproduct címről vagy a Swagger
felületről.


Érdemes a zöld nyíl melletti lenyíló menüben olyan böngészőt megadni (Chrome,
Firefox), ami értelmes formában meg tudja jeleníteni a nyers JSON adatokat, ha
nem Swagger felületről tesztelünk.



Az alapértelmezésben megnyitandó URL útvonalat a projekt tulajdonságok között

adhatjuk meg: zöld nyíl melletti legördülő menü › <Projektnév › Debug
Properties. Ide egy a gyökércímhez képesti relatív útvonalrészt kell beírni. (pl.
api/efproduct)

Figyeljük meg, hogy a controller a konstruktorban igényli meg a DI-tól az EF kontextet, amit a
szokásos módon osztályváltozóban tárol el.

85

https://github.com/dotnet/Scaffolding/issues/1875
https://github.com/dotnet/Scaffolding/issues/1875

Köztes réteg alkalmazása
A rétegezett architektúra elveit követve gyakori eljárás, hogy a kontroller nem éri el közvetlenül az
EF kontextet, hanem csak egy extra rétegen keresztül. A kontroller projekt így függetleníthető az EF
modelltől.

Ehhez a megoldáshoz készítsünk külön kontroller változatot. A Controllers mappába hozzunk létre

egy kontrollert (Add › Controller › bal fában Common › API › jobb oldalon API Controller with
read/write actions) ProductsController néven.

A BLL projekt Services mappájába hozzunk létre egy új osztályt ProductService néven. Az új osztály
kontroller számára nyújtandó funkcióit az IProductService adja meg. Implementáljuk ezt az
interfészt, a kiinduló implementációt generáltassuk a Visual Studio-val. Konstruktorban várja a
függőségként a kontextet. A kontext segítségével implementáljuk normálisan a GetProducts
függvényt. Eager Loading használatával az egyes termékekhez a kapcsolódó kategóriát és
megrendeléseket is adjuk vissza.

public class ProductService : IProductService
{
 private readonly AppDbContext _context;

 public ProductService(AppDbContext context)
 {
 _context = context;
 }

 public IEnumerable<Product> GetProducts()
 {
 var products = _context.Products
 .Include(p => p.Category)
 .Include(p => p.ProductOrders)
 .ThenInclude(po => po.Order)
 .ToList();

 return products;
 }
 /*Többi függvény generált implementációja*/
}

Injektáljunk IProductService-t a ProductsController-be.

private readonly IProductService _productService;

public ProductsController(IProductService productService)
{
 _productService = productService;
}

86

Adjuk meg a DI alrendszernek, hogy hogyan kell egy IProductService típusú függőséget létrehozni.
A legfelső szintű kódba:

builder.Services.AddTransient<IProductService, ProductService>();

A függőséginjektálás úgy működik, hogy a kontrollereket is a központi DI komponens példányosítja,
és ilyenkor megvizsgálja a konstruktor paramétereket. Ha a konténerben talál alkalmas
beregisztrált osztályt, akkor azt létrehozza és átadja a konstruktornak. Ezt hívjuk konstruktor
injektálásnak. Ha a létrehozandó függőségnek is vannak konstruktor paraméterei, akkor azokat is
megpróbálja feloldani, így rekurzívan a teljes függőségi objektum hierarchiát le tudja kezelni (ha
abban nincs irányított kör). Ezt hívjuk autowiring-nek.

A regisztráció során több lehetőségünk is van. Egyrészt nem kötelező interfészt megadni egy osztály
beregisztrálásához, az osztályt önmagában is be lehet regisztrálni, ilyenkor a konstruktorban is
osztályként kell elkérni a függőségeket.

Háromféle példányosítási stratégiával regisztrálhatjuk be az osztályainkat:

• Transient: minden egyes injektálás során új példány jön létre

• Scoped: HTTP kérésenként egy példány kerül létrehozásra és a kérésen belül mindenkinek ez
lesz injektálva

• Singleton: mindenkinek ugyanaz az egy példány kerül átadásra kéréstől függetlenül

Írjunk új Get() változatot az eredeti helyett a ProductsController-be az IProductService függőséget
felhasználva:

[HttpGet]
public IEnumerable<Product> Get()
{
 return _productService.GetProducts();
}

Próbáljuk ki (api/products). Hibát kapunk, mert a ProductService lekérdező függvénye eager
loading-gal (Include) navigációs property-ket is kitölt, így könnyen hivatkozási kör jön létre, amit a
JSON sorosító alapértelmezésben kivétellel jutalmaz. A sorosítást a keretrendszer végzi, a
kontrollerfüggvény visszatérési értékét sorosítja a HTTP tartalomegyeztetési szabályok szerint.
Böngésző kliens esetén alapesetben a JSON formátum lesz a befutó. Persze a sorosítás ennél
közvetlenebbül is konfigurálható, ha szükséges.

A kontrollerek által használt JSON sorosítót konfigurálhatjuk a legfelső szintű kódban, például
beállíthatjuk, hogy ha egy objektumot már korábban sorosított, akkor csak hivatkozzon rá és ne
sorosítsa újra.

/**/builder.Services.AddControllers() //; törölve
 .AddJsonOptions(o => o.JsonSerializerOptions.ReferenceHandler = ReferenceHandler
.Preserve);

87

https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/formatting

Így már sikerülni fog a sorosítás, egy elég furcsa JSON-t láthatunk, ahol az első elem egy nagyobb
objektumgráfot leíró rész, a többi elem pedig csak hivatkozás.

Ennek a megoldásnak a hátránya, hogy a kliensoldali sorosítónak is támogatnia kell ezt a sorosítási
logikát, a JSON-on belüli kereszthivatkozások kezelését.

Emiatt kommentezzük is ki ezt a beállítást, keressünk más megoldást.

DTO osztályok
Láthattuk, hogy az entitástípusok közvetlen sorosítása gyakran nehézségekbe ütközik. A modell
kifejezetten az EF számára lett megalkotva, illetve hogy a lekérdező műveleteket minél
kényelmesebben végezhessük. A kliensoldal számára érdemes külön modellt megalkotni, egy ún.
DTO (Data Transfer Object) modellt, ami a kliensoldal igényeit veszi figyelembe: pontosan annyi
adatot és olyan szerkezetben tartalmaz, amire a kliensnek szüksége van.

A BLL projektben jelenleg egy nagyon egyszerű DTO modell található a Dtos mappában:

• rekord típusok alkotják a modellt

• nincs benne minden navigációs property, pl. Category.Products

• nincs benne a kapcsolótáblát reprezentáló entitás

• a termékből közvetlenül elérhetők a megrendelések

A különféle modellek közötti leképezésnél jól jönnek az ún. object mapper-ek, melyek segítenek
elkerülni a leképezésnél nagyon gyakori repetitív kódokat, mint amilyen az x.Prop = y.Prop jellegű
propertyérték-másolgatás.

Adjuk hozzá az API projekthez az AutoMapper.Extensions.Microsoft.DependencyInjection csomagot,
a BLL projekthez pedig az AutoMapper csomagot.

A leképezési konfigurációkat profilokba szervezve adhatjuk meg. Adjunk hozzá a BLL projekthez
egy új osztályt WebApiProfile néven a Dtos mappába. Az AutoMapper konvenció alapon működik,
tehát a DTO-entitás párokon kívül nem kell megadni például egyesével a property- vagy
konstruktorparaméter-leképezéseket, ha a nevek alapján a leképezés kikövetkeztethető. Külön
konfigurálásra csak a nem-triviális esetekben van szükség.

using AutoMapper;

namespace WebApiLab.Bll.Dtos;

public class WebApiProfile : Profile
{
 public WebApiProfile()
 {
 CreateMap<Dal.Entities.Product, Product>().ReverseMap();
 CreateMap<Dal.Entities.Order, Order>().ReverseMap();
 CreateMap<Dal.Entities.Category, Category>().ReverseMap();
 }

88

}

A DI konténerhez adjuk hozzá és konfiguráljuk a leképezési szolgáltatást.

builder.Services.AddAutoMapper(typeof(WebApiProfile));


Az AutoMapper az AddAutoMapper paramétereként megadott típust definiáló
szerelvényben fogja a profilt keresni. A konkrét típusnak nincs más jelentősége,
nem kell feltétlenül profilnak lenni.

Injektáltassuk be a leképzőt reprezentáló IMapper típusú objektumot a ProductService-be.

/**/private readonly AppDbContext _context;
 private readonly IMapper _mapper;
/**/
/**/public ProductService(AppDbContext context
 , IMapper mapper)
/**/{
/**/ _context = context;
 _mapper = mapper;
/**/}

A ProductsController-ben, az IProductService-ben és a ProductService-ben az entitásokra mutató
névteret cseréljük ki a DTO-kra mutatóra:

//using WebApiLab.Dal.Entities;
using WebApiLab.Bll.Dtos;

Írjuk át a lekérdezést a ProductService-ben a leképzőt alkalmazva:

/**/public IEnumerable<Product> GetProducts()
/**/{
/**/ var products = _context.Products
 .ProjectTo<Product>(_mapper.ConfigurationProvider)
 .AsEnumerable();
/**/ return products;
/**/}

Hogy ne zavarjanak be a Swaggernek az EFProductController-ben használt entitás osztályok,
töröljük ki a Controllers mappából az EFProductController-t!

Próbáljuk ismét meghívni böngészőből, figyeljük meg a naplóban, hogy milyen SQL lekérdezés fut
le.

 A többrétegű architektúránál elméletben minden rétegnek külön

89

objektummodellje kellene, hogy legyen DAL: EF entitások, BLL: domain
objektumok, Kontroller: DTO-k, viszont ha a domain objektumok nem visznek
plusz funkciót a rendszerbe, akkor el szoktuk hagyni.

A DTO leképezést más rétegben is végezhetnénk. Egyes megközelítések szerint a kontroller réteg
feladata lenne, azonban, ha az EF lekérdezésekkel összevonva végezzük a leképezést, akkor
kiaknázhatjuk a query result shaping előnyeit, azaz csak azt kérdezzük le az adatbázisból, amire a
leképezésnek szüksége van. Az AutoMapper ProjectTo függvénye ráadásul mindezt el is intézi
helyettünk a leképezési konfiguráció alapján.



A ProjectTo speciálisan IQueryable-en működik. Ha csak simán memóriabeli
objektumok között szeretnénk leképezni, akkor az IMapper Map<> függvényét hívjuk.
A memóriabeli leképezésnek hátránya, hogy EF szinten gondoskodnunk kell róla,
hogy Include hívásokkal a leképezéshez szükséges kapcsolódó entitásokat is
lekérdezzük. A ProjectTo ezt is elintézi helyettünk.

A ProjectTo metódust felfoghatjuk a továbbiakban egy LINQ-s Select() operátornak, annyi
különbséggel, hogy az AutoMapper generálja azt az Expression-t, ami alapján előáll majd az
eredmény.

BLL funkciók implementációja

Egy elem lekérdezése

Valósítsunk meg további interfész által előírt funkciókat a ProductService osztályban:

/**/public Product GetProduct(int productId)
/**/{
 return _context.Products
 .ProjectTo<Product>(_mapper.ConfigurationProvider)
 .SingleOrDefault(p => p.Id == productId)
 ?? throw new EntityNotFoundException("Nem található a termék");
/**/}

Beszúrás

Ez hasonló az EF gyakorlaton látottakhoz, csak itt nem kell legyártanunk az új Product példányt,
paraméterként kapjuk és memóriában leképezzük az enititásra. A SaveChanges hívás után a kulcs
értéke már ki lesz töltve (adatbázis osztja ki a kulcsot).

/**/public Product InsertProduct(Product newProduct)
/**/{
 var efProduct = _mapper.Map<Dal.Entities.Product>(newProduct);
 _context.Products.Add(efProduct);
 _context.SaveChanges();
 return GetProduct(efProduct.Id);

90

https://en.wikipedia.org/wiki/Domain_model
https://en.wikipedia.org/wiki/Domain_model

/**/}

Módosítás

Konvenció szerint külön paraméterként szokták átadni a módosítandó elem azonosítóját és az új
értékeket összefogó példányt. Leképezés után összeállítunk egy olyan entitás példányt, mint amilyet
az adatbázisból kérdeztünk volna le - viszont ez a példány nem lesz a kontext látókörében. Az
Attach függvény hasonló az Add-hoz, hozzáadja a kontext nyilvántartásához a példányt, de az Attach
alapesetben nem jelöli meg a státuszt, marad változatlan (Unchanged). Explicit megjelöljük
változottként, a változást végül a SaveChanges érvényesíti.

/**/public void UpdateProduct(int productId, Product updatedProduct)
/**/{
 var efProduct = _mapper.Map<Dal.Entities.Product>(updatedProduct);
 efProduct.Id = productId;
 _context.Attach(efProduct).State = EntityState.Modified;
 _context.SaveChanges();
/**/}



Alternatíva lehetne még ennél a függvénynél, hogy lekérdezzük azonosító (Id)
alapján az entitást és AutoMapperrel a lekérdezett objektumba mappeljük a DTO-t.
Ebben az esetben nincs szükség Attach-ra és állapotkezelésre sem, viszont extra
lekérdezéssel jár.

Törlés

Egy trükkel elkerülhetjük, hogy le kelljen kérdezni a törlendő terméket. Az azonosító alapján
előállítunk memóriában egy példányt a megfelelő kulccsal, majd Remove függvénnyel hozzáadjuk a
kontexthez. A Remove törlendőnek jelöli a példányt.

/**/public void DeleteProduct(int productId)
/**/{
 _context.Products.Remove(new Dal.Entities.Product(null!) { Id = productId });
 _context.SaveChanges();
/**/}

REST konvenciók alkalmazása
A REST megközelítés nem csak átviteli közegnek tekinti a HTTP-t, hanem a protokoll részeit
felhasználja, hogy kiegészítő információkat vigyen át. Emiatt előnyös lenne, ha nagyobb
ellenőrzésünk lenne a HTTP válasz felett - szerencsére az ASP.NET Core biztosítja ehhez a megfelelő
API-kat.

Egyik legegyszerűbb ilyen irányelv, hogy a lekérdezések eredményeként, ha megtaláltuk és
visszaadtuk a kért adatokat, akkor 200 (OK) HTTP válaszkódot adjunk.

91

 A HTTP kérést érintő irányelvekről egy jó összefoglaló elérhető itt.

Az eddig megírt Get() függvényünk most is 200 (OK)-ot ad, ezt le is ellenőrizhetjük a böngészőnk
hálózati monitorozó eszközében.



A HTTP kommunikáció megfigyelésére használhatjuk a böngészők beépített
eszközeit, mint amilyen a Firefox Developer Tools, illetve Chrome DevTools.
Általában az F12 billentyűvel aktiválhatók. Emellett, ha egy teljesértékű HTTP
kliensre van szükségünk, amivel például könnyen tudunk nem csak GET kéréseket
küldeni, akkor a Postman és a Fiddler Classic külön telepítendő eszközök
ajánlhatók. A Fiddler mint proxy megoldás egy Windows gépen folyó HTTP
kommunikáció megfigyelésére is alkalmas.

Első körben a két lekérdező függvényt írjuk át úgy, hogy a HTTP válaszkódokat explicit megadjuk. A
jelenlegi legmodernebb mód ehhez az ActionResult<> használata. Elég T-t visszaadnunk a
függvényben, automatikusan ActionResult<T> típussá konvertálódik. Tehát elvileg írhatnánk ezt:

//NEM FORDUL!
/**/[HttpGet]
 public ActionResult<IEnumerable<Product>> Get()
 //ActionResult<T> visszatérési érték
/**/{
/**/ return _productService.GetProducts();
/**/}

Azonban ez nem fordul, mert interfész típus esetén nem működik a konverzió. Konkrét típust, pl.
egy listát kell megadnunk.

/**/[HttpGet]
/**/public ActionResult<IEnumerable<Product>> Get()
/**/{
 return _productService.GetProducts().ToList(); //ToList bekerült
/**/}

Írjuk meg ugyanígy a másik Get függvényt is:

/**/[HttpGet("{id}")]
 public ActionResult<Product> Get(int id)
 //ActionResult<Product> visszatérési érték
/**/{
 return _productService.GetProduct(id);
/**/}

Próbáljuk ki mindkét kontroller függvényt (api/products, api/products/1), ellenőrizzük a
státuszkódokat is.

92

https://www.restapitutorial.com/lessons/httpmethods.html
https://developer.mozilla.org/en-US/docs/Tools
https://developers.google.com/web/tools/chrome-devtools/
https://www.getpostman.com/
https://www.telerik.com/download/fiddler

Ami fura, hogy még mindig nem állítottunk explicit státuszkódokat. A logikánk most még nagyon
egyszerű, csak a hibamentes ágat kezeltük, így eddig az ActionResult alapértelmezései megoldották,
hogy 200 (OK)-ot kapjunk.

Most viszont következzen egy létrehozó művelet:

/**/[HttpPost]
 public ActionResult<Product> Post([FromBody] Product product)
 //ActionResult<T> visszatérési érték + Product paraméter
/**/{
 var created = _productService.InsertProduct(product);
 return CreatedAtAction(nameof(Get), new { id = created.Id }, created);
/**/}

Itt már látszik az ActionResult haszna. A konvenciónak megfelelően 201-es kódot akarunk
visszaadni. Ehhez a ControllerBase ősosztály biztosít segédfüggvényt. A segédfüggvény olyan
ActionResult leszármazottat ad vissza, ami 201-es kódot szolgáltat a kliensnek. Másik konvenció,
hogy a Location HTTP fejlécben legyen egy URL az új termék lekérdező műveletének meghívásához.
Ezt az URL-t rakjuk össze a CreatedAtAction paraméterei révén.

Gyakori, hogy a lefele irányú kommunikáció során (kliens felé) bővebb adathalmaz kerül
leküldésre, mint amit egy létrehozáskor vagy módosításkor várunk. Esetünkben is az Orders és a
Category propertyk létrehozáskor feleslegesek. Erre a célra jobb egy külön DTO-t létrehozni, ami
csak a megfelelő adatokat tartalmazza. Most ideiglenesen tegyük nullozhatóvá ezt a két propertyt.

public record Product
{
 /*többi property*/
 public Category? Category { get; init; } //? módosító bekerült
 public List<Order>? Orders { get; init; } //? módosító bekerült
}

Próbáljuk ki a műveletet Swagger felületről. Egy Product-ot kell felküldenünk. Erre egy példa érték:

{
 "Name" : "Pálinka",
 "UnitPrice" : 4000,
 "ShipmentRegion" : 1,
 "CategoryId" : 1
}


Ha Fiddlerből vagy Postmanből tesztelünk, ne felejtsük el a Content-Type fejlécet
application/json-re állítani! Figyeljük meg a kapott választ. A válaszból másoljuk
ki a Location fejlécből az URL-t és hívjuk meg böngészőből.

Fiddler Classic példa POST hívásra:

93

A módosító, törlő műveleteknél a konvenció megengedi, hogy üres törzsű (body) választ adjunk,
ilyenkor a válaszkód 204 (No Content). Ilyesfajta válasz előállításához is van segédfüggvény, illetve
elég csak az ActionResult típust megadni visszatérési típusnak:

/**/[HttpPut("{id}")]
 public ActionResult Put(int id, [FromBody] Product product)
 //ActionResult visszatérési érték + Product paraméter
/**/{
 _productService.UpdateProduct(id, product);
 return NoContent();
/**/}

/**/[HttpDelete("{id}")]
public ActionResult Delete(int id)
 //ActionResult visszatérési érték
/**/{
 _productService.DeleteProduct(id);
 return NoContent();
/**/}



PUT mellett a módosításhoz használatos a PATCH is. A PUT konvenció szerint teljes,
míg a PATCH részleges felülírásnál használatos. PATCH esetén általában
valamilyen patch formátumú adatot küld a kliens, pl. RFC 6902 - JSON Patch. A
JSON Patch formátumot jelenleg csak a JSON korábbi sorosító (Newtonsoft.Json)
támogatja.

94

https://tools.ietf.org/html/rfc6902
https://docs.microsoft.com/en-us/aspnet/core/web-api/jsonpatch


Gyakori, hogy a PUT művelet esetében nem 204 No Content válasszal térünk
vissza, hanem 200 OK státuszkóddal és a módosított erőforrással, hogy a kliens a
tényleges érvényre jutott értékekkel befrissíthesse a saját adatait.

Próbáljuk kitörölni az újonnan felvett terméket Swaggerből/Fiddler-ből/Postman-ből (DELETE igés
kérés az api/products/<új id> címre, üres törzzsel). Sikerülnie kell, mert még nincs rá idegen kulcs
hivatkozás.

Hibakezelés
Eddig főleg csak a hibamentes ágakat (happy path) néztük. A REST konvenciók rendelkeznek arról
is, hogy bizonyos hibahelyezetekben milyen HTTP választ illik adni, például ha a kérésben
hivatkozott azonosító nem létezik - 404-es hiba a bevett eljárás. Státuszkódok szempontjából a
korábban idézett oldal ad segítséget, a válasz törzsében a hibaüzenet szerkezete tekintetében az
RFC 7807 ad iránymutatást az ún. Problem Details típusú válaszok bevezetésével. Az ASP.NET Core
2.1-es verzió óta támogatja a Problem Details válaszokat, és általában automatikusan ilyen
válaszokat küld.

400 Bad Request

Kezdjük a kliens által küldött nem helyes adatokkal. Ez a hibakód nem összekeverendő a 415-tel,
ahol az adat formátuma nem megfelelő (XML vagy JSON): ezt általában nem kell kézzel lekezeljük,
mivel ezt az ASP.NET megteszi helyettünk. 400-zal olyan hibákat szoktunk lekezelni, ahol a küldött
adat formátuma megfelelő, de valamilyen saját validációs logikának nem felel meg a kapott
objektum, pl.: egységár nem lehet negatív stb.

Itt használjuk fel a .NET ún. Data Annotation attribútumait, amiket a DTO-kon érvényesíthetünk, és
az ASP.NET Core figyelembe vesz a művelet végrehajtása során. Vegyünk fel a Product DTO
osztályban néhány megkötést attribútumok formájában.

 [Required(ErrorMessage = "Product name is required.", AllowEmptyStrings = false)]
/**/public string Name { get; init; } = null!;

 [Range(1, int.MaxValue, ErrorMessage = "Unit price must be higher than 0.")]
/**/public int UnitPrice { get; init; }

Próbáljuk ki egy POST /api/Products művelet meghívásával. Paraméterként kiindulhatunk a felület
által adott minta JSON-ból, csak töröljük ki a navigációs property-ket és sértsük meg valamelyik
(vagy mindkét) fenti szabályt. Egy példa törzs:

{
 "Name" : "",
 "UnitPrice" : 0,
 "ShipmentRegion" : 1,
 "CategoryId" : 1
}

95

https://httpstatuses.com
https://tools.ietf.org/html/rfc7807
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation#built-in-attributes
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation#built-in-attributes

A válasz 400-as kód és valami hasonló, RFC 7807-nek megfelelő törzs lesz:

{
 "type": "https://tools.ietf.org/html/rfc7231#section-6.5.1",
 "title": "One or more validation errors occurred.",
 "status": 400,
 "traceId": "|2f35d378-4420cbafb80aec04.",
 "errors": {
 "Name": [
 "Product name is required."
],
 "UnitPrice": [
 "Unit price must be higher than 0."
]
 }
}

404 Not Found - kontroller szinten

Konvenció szerint 404-es hibát kellene adnunk, ha a keresett azonosítóval nem található erőforrás -
esetünkben termék. Jelenleg a ProductService EntityNotFoundException-t dob, és amennyiben
Development módban futtatjuk az alkalmazást, a cifra hibaoldal jelenik meg, amit a
DeveloperExceptionPage middleware generál. Ha kivesszük a middleware-t (vagy nem Development
módban indítjuk, de ekkor gondoskodnunk kell connection string-ről, ami eddig csak a
Development konfigurációban volt beállítva), akkor 500-as hibát kapunk vissza.



A kezeletlen kivételek általában 500-as hibakód formájában kerülnek vissza a
kliensre, mindenfajta egyéb információ nélkül (üres oldalként jelenik meg). Ez a
jobbik eset, ahhoz képest, ha a teljes kivételszöveg és stack trace is visszakerülne.
Az átlagos felhasználók nem tudják értelmezni, viszont a támadó szándékúaknak
értékes információt jelenthet, így ajánlott elkerülni, hogy a kivétel ilyen módon
kijusson. Ez az elkerülés az úgynevezett exception shielding technika, és az
ASP.NET Core alapértelmezetten alkalmazza.

Legegyszerűbb módszer a kontroller műveletben érvényesíteni a konvenciót:

/**/[HttpGet("{id}")]
/**/public ActionResult<Product> Get(int id)
/**/{
 try
 {
/**/ return _productService.GetProduct(id);
 }
 catch (EntityNotFoundException)
 {
 return NotFound();
 }

96

/**/}


Alternatív megoldás, hogy a ProductService egy null értékkel jelezné, hogy nincs
találat. Ezesetben a fenti kódban a null értékre kellene vizsgálni, pl. if
szerkezettel.

Próbáljuk ki, hogy 404-es státuszkódot és annak megfelelő problem details-t kapunk-e, ha egy nem
létező termékazonosítóval hívjuk a fenti műveletet.

Ha saját problem details-t szeretnénk a 404-es kód mellé, akkor kézzel összerakhatjuk és
visszaküldhetjük.

/**/catch (EntityNotFoundException)
/**/{
 ProblemDetails details= new ProblemDetails
 {
 Title = "Invalid ID",
 Status = StatusCodes.Status404NotFound,
 Detail = $"No product with ID {id}"
 };
 return NotFound(details); //ProblemDetails átadása
/**/}

Így is próbáljuk ki. Az általunk megadott üzenetet kell visszakapjuk.

404 Not Found - globális kivételleképezéssel

A rendhagyó válaszok előállításánál előnyös lehet, ha az alacsonyabb rétegekből specifikus
kivételeket dobunk, mert ezeket egy központi helyen szisztematikusan átalakíthatjuk konvenciónak
megfelelő HTTP válaszokká. Ez a képesség egyelőre még nem érhető el beépítetten, ezért egy
közösségi fejlesztésű NuGet csomagot használunk fel.

Telepítsük fel a Hellang.Middleware.ProblemDetails csomagot az API projektbe. Megtehetjük a
szokásos módon, de akár a Package Manager Console-ból is a következő paranccsal (az API projekt
legyen megadva, mint Default Project):

Install-Package Hellang.Middleware.ProblemDetails

Szokás szerint konfiguráljuk a legfelső szintű kódban. Sose adjuk vissza a kivétel részleteit (szigorú
exception shielding), illetve a saját kivételtípusunkat képezzük le 404-es hibára.

builder.Services.AddProblemDetails(options =>
{
 options.IncludeExceptionDetails = (ctx,ex) => false;
 options.MapToStatusCode<EntityNotFoundException>(StatusCodes.Status404NotFound);
});

97

https://github.com/khellang/Middleware

Illesszük a pipeline-ba a legelső helyre:

/**/var app = builder.Build();
 app.UseProblemDetails();

Térjünk vissza a korábbi, nem kivétel-elkapós változatra, az előzőt kommentezzük ki:

[HttpGet("{id}")]
public ActionResult<Product> Get(int id)
{
 return _productService.GetProduct(id);
}

Próbáljuk ki: hasonlóan kell működjön, mint a kontroller szintű változat, de ez általánosabb,
bármely műveletből EntityNotFoundException érkezik, azt kezeli, nem kell minden műveletben
megírni a kezelő logikát.

500 Internal Server Error

Próbáljunk kitörölni egy nem létező terméket DELETE api/products/<nem létező id> kéréssel. Az
újonnan beállított MW a nem kezelt kivétel esetén is egy alapszintű Problem Details választ állít elő
500-as kóddal.

Azonosítók ellenőrzése

Készítsük fel a módosító és törlő műveleteket is a nem létező azonosítók konvenció szerinti
kezelésére.

/**/public void UpdateProduct(int productId, Product updatedProduct)
/**/{
/**/ /*...*/
 try
 {
/**/ _context.SaveChanges();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!_context.Products.Any(p => p.Id == productId))
 throw new EntityNotFoundException("Nem található a termék");
 else
 throw;
 }
/**/}

/**/public void DeleteProduct(int productId)
/**/{
/**/ /*...*/

98

 try
 {
/**/ _context.SaveChanges();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!_context.Products.Any(p => p.Id == productId))
 throw new EntityNotFoundException("Nem található a termék");
 else
 throw;
 }
/**/}

Ez egy optimista megközelítés: feltételezzük, hogy helyes azonosítót kapunk. Ha kivételes esetben
mégsem, akkor az UPDATE/DELETE utasítás nem a megfelelő számú sort módosítja és
DbUpdateConcurrencyException-t kapunk. Ekkor vizsgáljuk csak meg, hogy az azonosító helyes-e.



Egy másik megközelítés szerint a DELETE műveletnek idempotensnek kellene
lennie, tehát egymás után többször végrehajtva is sikeres eredményt kell kapjunk.
Ez azt is jelenti, hogy 404-es hiba helyet 204 No Content státuszkódot kell
küldenünk akkor is, ha nem található adott ID-val entitás. Ezt a jelenlegi kódban
egyszerűen implementálhatjuk, hogy nem dobunk kivételt a megfelelő ágban.

Saját hibaüzenet

Módosítsuk a hibakezelő MW konfigurációját a legfelső szintű kódban, hogy a kivétel szövege
bekerüljön a válaszba. Ez akkor lehet hasznos, ha a felhasználónak kiírandó hibaüzenetet is vissza
akarjuk küldeni (másik lehetőség, hogy a kliens állítja elő, pl. a státuszkód alapján).

/**/builder.Services.AddProblemDetails(options =>
/**/{
/**/ options.IncludeExceptionDetails = (ctx, ex) => false;
 options.Map<EntityNotFoundException>(
 (ctx, ex) =>
 {
 var pd=StatusCodeProblemDetails.Create(StatusCodes.Status404NotFound);
 pd.Title = ex.Message;
 return pd;
 }
);
/**/});


Az exception shielding elv miatt csak olyan kivételeknél alkalmazzuk, ahol a
felhasználók számára hasznos, de nem technikai jellegű információt tartalmaz a
kivétel szövege.

Próbáljuk ki, hogy az egy termék lekérdezésénél, a módosításnál és a törlésnél is a rossz azonosító

99

egységesen működik-e: 404-es hibát ad vissza, a Problem Details-ben a kivétel szövegével.

Aszinkron műveletek
Aszinkron műveletek alkalmazásával hatékonyságjavulást érhetünk el: nem feltétlenül az egyes
műveleteink lesznek gyorsabbak, hanem időegység alatt több műveletet tudunk kiszolgálni. Ennek
oka, hogy az await-nél (például egy adatbázis művelet elküldésekor) a várakozási idejére történő
kiugrásnál, ha vissza tudunk ugrálni egészen az ASP.NET engine szintjéig, akkor a végrehajtó
környezet a kiszolgáló szálat a várakozás idejére más kérés kiszolgálására felhasználhatja.



Ökölszabály, hogy ha elköteleztük magunkat az aszinkronitás mellett, akkor ha
megoldható, az aszinkronitást vezessük végig a kontrollertől az adatbázis művelet
végrehajtásáig minden rétegben. Ha egy API-nak van TAP jellegű változata, akkor
azt részesítsük előnyben (pl. SaveChanges helyett SaveChangesAsync). Ha
aszinkronból szinkronba váltunk, csökkentjük a hatékonyságot, rosszabb esetben
deadlock-ot is előidézhetünk.

Vezessük végig az aszinkronitást egy művelet teljes végrehajtásán:

// Service réteg - interfész

/**/public interface IProductService
/**/{
 //public void UpdateProduct(int productId, Product updatedProduct);
 public Task UpdateProductAsync(int productId, Product updatedProduct);
/**/ //többi fv.
/**/}

// Service réteg - implementáció

 public async Task UpdateProductAsync(int productId, Product updatedProduct)
/**/{
/**/ var efProduct = _mapper.Map<Dal.Entities.Product>(updatedProduct);
/**/ efProduct.Id = productId;
/**/ _context.Attach(efProduct).State = EntityState.Modified;
/**/
/**/ try
/**/ {
 await _context.SaveChangesAsync(); //async változat hívása
/**/ }
/**/ catch (DbUpdateConcurrencyException)
/**/ {
/**/ if (!await _context.Products
 .AnyAsync(p => p.Id == productId))
 //async változat hívása
/**/ throw new EntityNotFoundException("Nem található a termék");
/**/ else
/**/ throw;
/**/ }

100

https://blog.stephencleary.com/2012/07/dont-block-on-async-code.html

/**/}

// Kontroller réteg

 public async Task<ActionResult> Put(int id, [FromBody] Product product)
/**/{
/**/ await _productService.
 .UpdateProductAsync(id, product);
 //async változat hívása
/**/ return NoContent();
/**/}


Az Async végződés alkalmazása kontroller műveletek nevében jelenleg nem
ajánlott, mert könnyen hibákba futhatunk.

Próbáljuk ki, például küldjünk PUT-ot az api/products/1 címre, állítsuk be a Content-Type:
application/json fejlécet és a POST-nál használt JSON-t küldjük a törzsben. Ezzel az 1-es id-jű termék
adatait fogjuk felülírni.

Végállapot
A többi műveletet aszinkronizálva az alábbi a végállapot (elérhető a kapcsolódó GitHub repo net6-
os ágán is):

public interface IProductService
{
 public Task<Product> GetProductAsync(int productId);
 public Task<IEnumerable<Product>> GetProductsAsync();
 public Task<Product> InsertProductAsync(Product newProduct);
 public Task UpdateProductAsync(int productId, Product updatedProduct);
 public Task DeleteProductAsync(int productId);
}

public class ProductService : IProductService
{
 private readonly AppDbContext _context;
 private readonly IMapper _mapper;

 public ProductService(AppDbContext context, IMapper mapper)
 {
 _context = context;
 _mapper = mapper;
 }

 public async Task<Product> GetProductAsync(int productId)
 {
 return await _context.Products
 .ProjectTo<Product>(_mapper.ConfigurationProvider)

101

https://github.com/dotnet/aspnetcore/issues/8998
https://github.com/bmeaut/WebApiLab/tree/net6
https://github.com/bmeaut/WebApiLab/tree/net6

 .SingleOrDefaultAsync(p => p.Id == productId)
 ?? throw new EntityNotFoundException("Nem található a termék");
 }

 public async Task<IEnumerable<Product>> GetProductsAsync()
 {
 var products = await _context.Products
 .ProjectTo<Product>(_mapper.ConfigurationProvider)
 .ToListAsync();

 return products;
 }

 public async Task<Product> InsertProductAsync(Product newProduct)
 {
 var efProduct = _mapper.Map<Dal.Entities.Product>(newProduct);
 _context.Products.Add(efProduct);
 await _context.SaveChangesAsync();
 return await GetProductAsync(efProduct.Id);
 }

 public async Task UpdateProductAsync(int productId, Product updatedProduct)
 {
 var efProduct = _mapper.Map<Dal.Entities.Product>(updatedProduct);
 efProduct.Id = productId;
 var entry = _context.Attach(efProduct);
 entry.State = EntityState.Modified;
 try
 {
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!await _context.Products.AnyAsync(p => p.Id == productId))
 throw new EntityNotFoundException("Nem található a termék");
 else
 throw;
 }
 }

 public async Task DeleteProductAsync(int productId)
 {
 _context.Products.Remove(
 new Dal.Entities.Product(null!) { Id = productId });
 try
 {
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!await _context.Products.AnyAsync(p => p.Id == productId))

102

 throw new EntityNotFoundException("Nem található a termék");
 else
 throw;
 }
 }
}

[Route("api/[controller]")]
[ApiController]
public class ProductsController : ControllerBase
{
 private readonly IProductService _productService;

 public ProductsController(IProductService productService)
 {
 _productService = productService;
 }

 // GET: api/<ProductsController>
 [HttpGet]
 public async Task<ActionResult<IEnumerable<Product>>> Get()
 {
 return (await _productService.GetProductsAsync()).ToList();
 }

 // GET api/<ProductsController>/5
 [HttpGet("{id}")]
 public async Task<ActionResult<Product>> Get(int id)
 {
 return await _productService.GetProductAsync(id);
 }

 // POST api/<ProductsController>
 [HttpPost]
 public async Task<ActionResult<Product>> Post([FromBody] Product product)
 {
 var created = await _productService.InsertProductAsync(product);
 return CreatedAtAction(nameof(Get), new { id = created.Id }, created);
 }

 // PUT api/<ProductsController>/5
 [HttpPut("{id}")]
 public async Task<ActionResult> Put(int id, [FromBody] Product value)
 {
 await _productService.UpdateProductAsync(id, value);
 return NoContent();
 }

 // DELETE api/<ProductsController>/5
 [HttpDelete("{id}")]
 public async Task<ActionResult> Delete(int id)

103

 {
 await _productService.DeleteProductAsync(id);
 return NoContent();
 }
}

104

ASP.NET Core webszolgáltatások III.

Kiegészítő anyagok, segédeszközök
• kapcsolódó GitHub repo: https://github.com/bmeaut/WebApiLab

◦ elég csak zip-ként letölteni a net6-client-init ágat, nem kell klónozni

• NSwag Studio - itt is elég csak a legfrissebb zip verziót az Assets részről letölteni

• Postman HTTP kérések küldéséhez

Kiinduló projektek beüzemelése
Csak ki kell csomagolni a zip-et, ez az előző gyakorlat folytatása - a kódot ismerjük. Ha nincs már
meg az adatbázisunk, akkor az előző gyakorlat alapján hozzuk létre az adatbázist Code-First
migrációval (Update-Database).

Egyszerű kliens
A tárgy tematikájának ugyan nem része a kliensoldal, de demonstrációs céllal egy egyszerű
kliensoldalról indított hívást implementálunk. A webes API-khoz nagyon sokféle technikával
írhatunk klienst, mivel gyakorlatilag csak két képességgel kell rendelkezni:

• HTTP alapú kommunikáció, HTTP kérések küldése, a válasz feldolgozása

• JSON sorosítás

A fentiekhez szinte minden manapság használt kliensoldali technológia ad támogatást. Mi most egy
sima, .NET 6 alapú konzol alkalmazást írunk kliens gyanánt.

A két képességet könnyen lefedhetjük a System.Net.Http (HTTP kommunikáció) és a
System.Text.Json (JSON sorosítás) csomagokkal. Mindkettő a Microsoft.NetCore.App shared
framework része, így általában nem kell külön beszereznünk őket.

Adjunk a solution-höz egy konzolos projektet (Console App (.NET 6), nem .NET Framework!)
WebApiLab.Client néven. A Program.cs-ben írjuk meg az egy terméket lekérdező függvényt
(GetProductAsync) és hívjuk meg.

Console.Write("ProductId: ");
var id = Console.ReadLine();
if(id != null)
 await GetProductAsync(int.Parse(id));

Console.ReadKey();

static async Task GetProductAsync(int id)
{
 using var client = new HttpClient();

105

https://github.com/bmeaut/WebApiLab
https://github.com/bmeaut/WebApiLab/archive/refs/heads/net6-client-init.zip
https://github.com/RicoSuter/NSwag/wiki/NSwagStudio
https://github.com/RicoSuter/NSwag/releases/latest
https://www.getpostman.com/

 /*Ha eltér, a portot írjuk át a szervernek megfelelően*/
 var response = await client.GetAsync(
 new Uri($"http://localhost:5184/api/Products/{id}"));
 response.EnsureSuccessStatusCode();
 var jsonStream = await response.Content.ReadAsStreamAsync();
 var json = await JsonDocument.ParseAsync(jsonStream);
 Console.WriteLine($"{json.RootElement.GetProperty("name")}:" +
 $"{json.RootElement.GetProperty("unitPrice")}.-");
}



Az elterjedtebb .NET alapú kliensek, a WinForms, WPF alkalmazások a legutóbbi
időkig .NET Framework alapúak voltak, viszont már egy ideje a .NET 6 is támogatja
a WinForms, WPF, WinUI, MAUI (régi Xamarin) alkalmazásokat. Célszerű ezeket
választani a régi .NET Framework alapú változatok helyett.

Állítsuk be, hogy a szerver és a kliensoldal is elinduljon (solutionön jobbklikk › Set startup
projects…), majd próbáljuk ki, hogy a megadott azonosítójú termék neve és ára megjelenik-e a
konzolon.

Jelenleg csak alapszintű (nem típusos) JSON sorosítást alkalmazunk. A következő lépés az lenne,
hogy a JSON alapján visszasorosítanánk egy konkrétabb objektumba. Ehhez kliensoldalon is kellene
lennie egy Product DTO-nak megfelelő osztálynak. Hogyan jöhetnek létre a kliensoldali
modellosztályok?

• kézzel létrehozzuk őket a JSON alapján - macerás, bár vannak rá eszközök, amik segítenek

• a DTO-kat osztálykönyvtárba szervezzük, mindkét oldal hivatkozza - csak akkor működik, ha
mindkét oldal .NET-es, ráadásul könnyen kaphat az osztálykönyvtár olyan függőséget, ami
igazából az egyik oldalnak kell csak, így meg mindkét oldal meg fogja kapni

• generáltatjuk valamilyen eszközzel a szerveroldal alapján - ezt próbáljuk most ki

Állítsuk be, hogy csak a szerveroldal (Api projekt) induljon.

OpenAPI/Swagger szerveroldal
Az OpenAPI (eredeti nevén: Swagger) eszközkészlet segítségével egy JSON alapú leírását tudjuk
előállítani a szerveroldali API-nknak. A leírás alapján generálhatunk dokumentációt, sőt
kliensoldali kódot is a kliensoldali fejlesztők számára. Jelenleg a legfrissebb specifikáció az OpenAPI
v3-as (OAS v3). Az egyes verziók dokumentációja elérhető itt.

Az OpenAPI nem .NET specifikus, különféle nyelven írt szervert és klienst is támogat. Ugyanakkor
készültek kifejezetten a .NET-hez is OpenAPI eszközök, ezek közül használunk párat most. .NET
környezetben a legelterjedtebb eszközkészletek:

• NSwag - leíró-, szerver-, és kliensoldali generálás is. Részleges OAS v3 támogatás.

• Swashbuckle - csak leíró generálás. OAS v3 támogatott.

• AutoRest - npm csomag .NET Core függőséggel, csak kliensoldali kódgeneráláshoz. Részleges OAS
v3 támogatás.

106

https://www.meziantou.net/visual-studio-tips-and-tricks-paste-as-json.htm
https://github.com/OAI/OpenAPI-Specification/tree/master/versions
https://github.com/RicoSuter/NSwag
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/Azure/autorest

• Swagger codegen - java alapú kliensoldali generátor. C# támogatás csak OpenAPI v2-höz

• Kiota - új, Microsoft fejlesztésű C# alapú kliensoldali generátor. OAS v3 támogatott.

Első lépésként a szerveroldali kódunk alapján Swagger leírást generálunk NSwag segítségével.

Adjuk hozzá a projekthez az NSwag.AspNetCore csomagot a Package Manager Console-ból vagy az
API projekt Manage NuGet packages UI-on, és töröljük ki a Swashbuckle.AspNetCore csomagot.

Konfiguráljuk a szükséges szolgáltatásokat a DI rendszerbe.

//builder.Services.AddEndpointsApiExplorer();
//builder.Services.AddSwaggerGen();
builder.Services.AddOpenApiDocument();

Az OpenAPI leíró, illetve a dokumentációs felület kiszolgálására regisztráljunk egy-egy NSwag
middleware-t az Endpoint MW elé. Az eddigi Swagger támogatással kapcsolatos kódok törölhetők.

/**/if (app.Environment.IsDevelopment())
/**/{
 //app.UseSwagger();
 //app.UseSwaggerUI();
 app.UseOpenApi();
 app.UseSwaggerUi3();
/**/}

A Swagger UI a /swagger útvonalon lesz elérhető. Próbáljuk ki, hogy működik-e a dokumentációs
felület a /swagger útvonalon, illetve a leíró elérhető-e a /swagger/v1/swagger.json útvonalon.

 A Swagger leíró linkje megtalálható a dokumentációs felület címsora alatt.

A dokumentációs felületen fedezzük fel a ProductsController műveleteit (Products felirat
kinyitásával), a visszatérési értékek leírását (példa, illetve modell-leíró), illetve a modell-leírókat a
műveletlista alatt. Hívjuk is meg a /api/Products/{id} változatot, kitöltve a szükséges paramétert.

 A kipróbáláshoz ne felejtsük el megnyomni a jobb oldalon a Try it out gombot.

107

https://github.com/swagger-api/swagger-codegen
https://github.com/swagger-api/swagger-codegen-generators/issues/172
https://learn.microsoft.com/en-us/openapi/kiota

SwaggerUI felület

108

Testreszabás - XML kommentek

Az NSwag képes a kódunk XML kommentjeit hasznosítani a dokumentációs felületen. Írjuk meg egy
művelet XML kommentjét.

/// <summary>
/// Get a specific product with the given identifier
/// </summary>
/// <param name="id">Product's identifier</param>
/// <returns>Returns a specific product with the given identifier</returns>
/// <response code="200">Listing successful</response>
/**/[HttpGet("{id}")]
/**/public async Task<ActionResult<Product>> Get(int id){/*...*/}

A Swagger komponensünk az XML kommenteket nem a forráskódból, hanem egy generált
állományból képes kiolvasni. Állítsuk be ennek a generálását a projekt build beállításai között (

Build › XML documentation file). Az alatta lévő textbox-ot üresen hagyhatjuk.

Projektbeállítások (Build lap) - XML dokumentációs fájl generálása

Testreszabás - Felsorolt típusok sorosítása szövegként

Következő kis testreszabási lehetőség, amit kipróbálunk, a felsorolt típusok szövegként való
generálása (az egész számos kódolás helyett). Ez általában a bevált módszer, mivel a kliensek
számára kifejezőbb. A DI-ban a JSON sorosítást konfiguráljuk:

/**/builder.Services.AddControllers() //; törölve
 .AddJsonOptions(o =>
 {
 //o.JsonSerializerOptions.ReferenceHandler = ReferenceHandler.Preserve;
 o.JsonSerializerOptions.Converters.Add(new JsonStringEnumConverter());
 });

Próbáljuk ki, hogy az XML kommentünk megjelenik-e a megfelelő műveletnél, illetve a válaszban a
Product.ShipmentRegion szöveges értékeket vesz-e fel.

Testreszabás - HTTP státuszkódok dokumentálása

Gyakori testreszabási feladat, hogy az egyes műveletek esetén a válasz pontos HTTP státuszkódját is

109

https://docs.microsoft.com/en-us/dotnet/csharp/codedoc
https://softwareengineering.stackexchange.com/questions/220091/how-to-represent-enum-types-in-a-public-api

dokumentálni szeretnénk, illetve ha több különböző kódú válasz is lehetséges, akkor mindegyiket.

Ehhez elég egy (vagy több) ProducesResponseType attribútumot felrakni a műveletre.

/// <summary>
/// Creates a new product
/// </summary>
/// <param name="product">The product to create</param>
/// <returns>Returns the product inserted</returns>
/// <response code="201">Insert successful</response>
/**/[HttpPost]
 [ProducesResponseType(StatusCodes.Status201Created)]
/**/public async Task<ActionResult<Product>> Post([FromBody] Product product)
{/*...*/}

/**/[HttpPut("{id}")]
 [ProducesResponseType(StatusCodes.Status204NoContent)]
/**/public async Task<ActionResult> Put(int id, [FromBody] Product value)
 {/*...*/}

/**/[HttpDelete("{id}")]
 [ProducesResponseType(StatusCodes.Status204NoContent)]
/**/public async Task<ActionResult> Delete(int id)
 {/*...*/}

Ellenőrizzük, hogy a dokumentációs felületen a fentieknek megfelelő státuszkódok jelennek-e meg.

OpenAPI/Swagger kliensoldal
A kliensoldalt az NSwag Studio eszközzel generáltatjuk. Ez a generátor egy egyszerűen használható,
de mégis sok beállítást támogató eszköz, azonban van pár hiányossága:

• egyetlen fájlt generál

• nem támogatja az új JSON sorosítót, csak a régebbit

Előkészítésként adjuk a Client projekthez az alábbiakat:

• Newtonsoft.Json NuGet csomagot

• egy osztályt ApiClients néven

Indítsuk el a projektünket (a szerveroldalra lesz most szükség) és az NSwag Studio-t, és adjuk meg
az alábbi beállításokat:

• Input rész (bal oldal): válasszuk az OpenAPI/Swagger Specification fület és adjuk meg a OpenAPI
leírónk címét (pl.: http://localhost:5000/swagger/v1/swagger.json). Nyomjuk meg a Create local
Copy gombot.

• Input rész (bal oldal) - Runtime: Net60

• Output rész (jobb oldal) - jelöljük be a CSharp Client jelölőt

110

https://github.com/RicoSuter/NSwag/issues/1398
https://github.com/RicoSuter/NSwag/issues/2243
http://localhost:5000/swagger/v1/swagger.json

• Output rész (jobb oldal) - CSharp Client fül - Settings alfül: fölül a Namespace mezőben adjunk
meg egy névteret, pl. WebApiLab.Client.Api, lentebb a Use the base URL for the request ne legyen
bepipálva

NSwag Studio beállítások

Jobb oldalt alul a Generate Outputs gombbal generáltathatjuk a kliensoldali kódot.

A generált kóddal írjuk felül az ApiClients.cs tartalmát (ehhez le kell állítani a futtatást). Ezután a
projektnek fordulnia kell. Írjuk meg a Program.cs-ben a GetProduct új változatát:

static async Task<Product> GetProduct2Async(int id)
{
 /*Ha eltér, a portot írjuk át a szervernek megfelelően*/
 using var httpClient = new HttpClient()
 { BaseAddress = new Uri("http://localhost:5184/") };
 var client = new ProductsClient(httpClient);
 return await client.GetAsync(id);
}

Használjuk az új változatot.

111

/**/if (id != null)
 {
 //await GetProductAsync(int.Parse(id));
 var p = await GetProduct2Async(int.Parse(id));
 Console.WriteLine($"{p.Name}: {p.UnitPrice}.-");
 }

Állítsuk be, hogy a szerver és a kliensoldal is elinduljon, majd próbáljuk ki, hogy megjelenik-e a kért
termék neve és ára.

 Ez csak egy minimálpélda volt, az NSwag nagyon sok beállítással rendelkezik.

A kliensre innentől nem lesz szükség, beállíthatjuk, hogy csak a szerver induljon.



A generált kliens helyes működéséhez a műveletek minden nem hibát jelző
státuszkódjait (2xx) dokumentálnunk kellene Swagger-ben a ProducesResponseType
attribútummal, különben helyes szerver oldali lefutás után is kliensoldalon nem
várt státuszkód hibát kaphatunk.

Hibakezelés II.

409 Conflict - konkurenciakezelés

Konfiguráljuk fel a Product entitást úgy, hogy az esetleges konkurenciahelyzeteket is felismerje a
frissítés során. Jelöljünk ki egy kitüntetett mezőt (RowVersion), amit minden update műveletkor
frissítünk, így ez az egész rekordra vonatkozó konkurenciatokenként is felfogható.

Ehhez vegyünk fel egy byte[]-t a Product entitás osztályba RowVersion néven.

/**/public class Product
/**/{
/**/ //...
 public byte[] RowVersion { get; set; } = null!;
/**/}

Állítsuk be az EF kontextben (OnModelCreating), hogy minden módosításnál frissítse ezt a mezőt és
ez legyen a konkurenciatoken, az IsRowVersion függvény ezt egyben el is intézi:

modelBuilder.Entity<Product>()
 .Property(p => p.RowVersion)
 .IsRowVersion();


A háttérben az EF a módosítás során egy plusz feltételt csempész az UPDATE SQL
utasításba, mégpedig, hogy az adatbázisban lévő RowVersion mező adatbázisbeli
értéke az ugyanaz-e mint, amit ő ismert (a kliens által látott) értéke. Ha ez a feltétel

112

https://github.com/RicoSuter/NSwag/wiki

sérül, akkor konkurenciahelyzet áll fent, mivel valaki már megváltoztatta az
adatbázisban lévő értéket.

Migrálnunk kell, mert megjelent egy új mező a Products táblánkban. Ne felejtsük el a szokásos
módon beállítani a Default Project-et a DAL-ra a Package Manager Console-ban!

Add-Migration ProductRowVersion
Update-Database

Még a Product DTO osztályba is fel kell vegyük a RowVersion tulajdonságot és legyen ez is kötelező.

/**/public record Product
/**/{
/**/ //...
 [Required(ErrorMessage = "RowVersion is required")]
 public byte[] RowVersion { get; init; } = null!;
/**/}

Konkurenciahelyzet esetén a 409-es hibakóddal szokás visszatérni, illetve PUT művelet során a
válasz azt is tartalmazhatja, hogy melyek voltak az ütköző mezők. Az ütközés feloldása tipikusan
nem feladatunk ilyenkor.

Készítsünk egy saját ProblemDetails leszármazottat. Hozzunk létre egy új mappát ProblemDetails
néven az Api projektben és bele egy új osztályt ConcurrencyProblemDetails néven, az alábbi
implementációval:

public record Conflict(object? CurrentValue, object? SentValue);

public class ConcurrencyProblemDetails : StatusCodeProblemDetails
{
 public Dictionary<string, Conflict> Conflicts { get; }

 public ConcurrencyProblemDetails(DbUpdateConcurrencyException ex) :
 base(StatusCodes.Status409Conflict)
 {
 Conflicts = new Dictionary<string, Conflict>();
 var entry = ex.Entries[0];
 var props = entry.Properties
 .Where(p => !p.Metadata.IsConcurrencyToken).ToArray();
 var currentValues = props.ToDictionary(
 p => p.Metadata.Name, p => p.CurrentValue);

 entry.Reload();

 foreach (var property in props)
 {
 if (!Equals(currentValues[property.Metadata.Name], property.CurrentValue))
 {

113

 Conflicts[property.Metadata.Name] = new Conflict
 (
 property.CurrentValue,
 currentValues[property.Metadata.Name]
);
 }
 }
 }
}

A fenti megvalósítás összeszedi az egyes property-khez (a Dictionary kulcsa) a jelenlegi
(CurrentValue) és a kliens által küldött (SentValue) értéket. Adjunk egy újabb leképezést a hibakezelő
MW-hez a legfelső szintű kódban:

/**/builder.Services.AddProblemDetails(options =>
/**/{
/**/ //..
 options.Map<DbUpdateConcurrencyException>(
 ex => new ConcurrencyProblemDetails(ex));
/**/});

Ezzel kész is az implementációnk, amit Postman-ből fogjuk kipróbálni. A kész kód elérhető a net6-
client-megoldas ágon.


A kötelezően kitöltendő konkurencia mező beszúrásnál kellemetlen, hiszen
kliensoldalon még nem tudható a token kezdeti értéke. Ilyenkor használhatunk
bármilyen értéket, az adatbázis fogja a kezdeti token értéket beállítani.

Postman használata
Postman segítségével összeállítunk egy olyan hívási sorozatot, ami két felhasználó átlapolódó
módosító műveletét szimulálja. A két felhasználó ugyanazt a terméket (tej) fogja módosítani, ezzel
konkurenciahelyzetet előidézve.

Kollekció generálás OpenAPI leíró alapján

A Postman képes az OpenAPI leíró alapján példahívásokat generálni. Ehhez indítsuk el a
szerveralkalmazásunkat és a Postman-t is. A Postman-ben fölül az Import gombot választva adjuk
meg az OpenAPI leíró swagger.json URL-jét (amit az elindított BE /swagger oldalán a címsor alatt
találunk). A felugró ablakban csak a Generate collection from imported APIs opciót válasszuk.
Ezután megjelenik egy új Postman API és egy új kollekció is My Title néven - ezeket nevezzük át

WebApiLab-ra (jobbklikk a néven › Rename).

 További segítség a dokumentációban.

A kollekcióban mind az öt műveletre található példahívás.

114

https://github.com/bmeaut/WebApiLab/tree/net6-client-megoldas
https://github.com/bmeaut/WebApiLab/tree/net6-client-megoldas
https://learning.postman.com/docs/designing-and-developing-your-api/importing-an-api/#importing-api-definitions

Változók

A változókat a kéréseken belüli és a kérések közötti adatátadásra használhatjuk. Több hatókör
(scope) közül választhatunk, amikor definiálunk egy változót: globális, kollekción belüli,
környezeten belüli, kérésen belüli lokális. Sőt, egy adott nevű változót is definiálhatunk több
szinten is - ilyenkor a specifikusabb felülírja az általánosabbat. Ebben a példában mi most csak a
kollekció szintet fogjuk használni.

A kollekciót kiválasztva egy új fül jelenik meg, itt a Variables fülön állíthatjuk a változókat, illetve
megnézhetjük az aktuális értéküket.

 További segítség a kollekció változók felvételéhez a dokumentációban.

Vegyük fel az alábbi változókat:

• u1_allprods - az első felhasználó által lekérdezett összes termék adata

• u1_tejid - az előző listából az első felhasználó által kiválasztott termék (tej) azonosítója

• u1_tej - az előbbi azonosító alapján lekérdezett termék adata

• u1_tej_deluxe - az előbbi termék módosított termékadata, amit a felhasználó menteni kíván

Ne felejtsük el elmenteni a kollekció változtatásait a Save (CTRL + S) gombbal.


A Postman nem ment automatikusan, ezért lehetőleg mindig mentsünk (CTRL  +  S),
amikor egy másik hívás, kollekció szerkesztésére térünk át.

Mappák

A kéréseinket külön mappákba szervezve elkülöníthetjük a kollekción belül az egyes
(rész)folyamatokat. Mappákat a kollekció extra menüjén (a kollekció neve mellett a … ikont
megnyomva) belül az Add Folder menüpont segítségével vehetünk fel.

Vegyünk fel a kollekciónkba egy új mappát Update Tej néven.

 További segítség új mappa felvételéhez a dokumentációban.

Egy felhasználó folyamata

Egy tipikus módosító folyamat felhasználói szempontból az alábbi lépésekből áll - az egyes
lépésekhez szerveroldali API műveletek kapcsolódnak, ezeket a listaelemekhez hozzá is
rendelhetjük:

• összes termék megjelenítése - API: összes termék lekérdezése

• módosítani kívánt termék kiválasztása - API: nincs teendő, tisztán kliensoldali művelet

• a módosítani kívánt termék részletes adatainak megjelenítése - API: egy termék adatainak
lekérdezése

• a kívánt módosítás(ok) bevitele - API: nincs, tisztán kliensoldali művelet

115

https://learning.postman.com/docs/sending-requests/variables/#defining-collection-variables
https://github.com/postmanlabs/postman-app-support/issues/3466
https://learning.postman.com/docs/collections/using-collections/#adding-folders-to-a-collection

• mentés - API: adott termék módosítása

• (vissza) navigáció + aktuális (frissített) állapot megjelenítése - API: összes termék lekérdezése

A négy API hívást klónozzuk (CTRL  +  D) a generált példahívásokból. Egy adott hívásra csináljunk egy
klónt (jobbklikk → Duplicate), drag-and-drop-pal húzzuk rá az új mappánkra, végül nevezzük át
(CTRL  +  E). Ezekre a hívásokra csináljuk meg:

• összes termék lekérdezése (módosítás előtt), azaz Products Get All példahívás, nevezzük át
erre: [U1]GetAllProductsBefore

• egy termék adatainak lekérdezése, azaz az {id} mappán belüli Get a specific product with the
given identifier példahívás, nevezzük át erre [U1]GetTejDetails

• adott termék módosítása, azaz az {id} mappán belüli Products Put példahívás, nevezzük át
erre [U1]UpdateTej

• összes termék lekérdezése (módosítás után), azaz Products Get All példahívás, nevezzük át
erre: [U1]GetAllProductsAfter

Postman hívások - egy felhasználó folyamata


Vegyük észre, hogy az elnevezések az OpenAPI leíró alapján generálódnak, tehát
ha máshogy dokumentáltuk az API-nkat, akkor más lesz a példahívások neve is.

116

Összes termék lekérdezése, saját vizualizáció és adattárolás változóba

Az [U1]GetAllProductsBefore hívás már most is kipróbálható külön a Send gombbal és az alsó
Body részen látható az eredmény formázott (Pretty) és nyers (Raw) nézetben.

Saját vizualizációt is írhatunk, ehhez a kérés Tests fülét használhatjuk. Az ide írt JavaScript nyelvű
kód a kérés után fog lefutni. Általában a válaszra vonatkozó teszteket szoktuk ide írni.

Írjuk be a kérés Tests fülén lévő szövegdobozba az alábbi kódot, ami egy táblázatos formába
formázza a válasz JSON fontosabb adatait:

const template = `
 <table bgcolor="#FFFFFF">
 <tr>
 <th>Name</th>
 <th>Unit price</th>
 <th>[Hidden]Concurrency token</th>
 </tr>

 {{#each response}}
 <tr>
 <td>{{name}}</td>
 <td>{{unitPrice}}</td>
 <td>{{rowVersion}}</td>
 </tr>
 {{/each}}
 </table>
`;
const respJson = pm.response.json();
pm.visualizer.set(template, {
 response: respJson
});

 További segítség a vizualizációkhoz a dokumentációban.

A visszakapott adatokra a későbbi lépéseknek is szükségük lesz, ezért mentsük el az u1_allprods
változóba.

/**/pm.visualizer.set(template, {
/**/ response: respJson
/**/});

pm.collectionVariables.set("u1_allprods", JSON.stringify(respJson));


Változóba mindig sorosított (pl. egyszerű szöveg típusú) adatot mentsünk, ne
közvetlenül a JavaScript változókat.

Próbáljuk ki így a kérést, alul a Body fül Visualize alfülén táblázatos megjelenítésnek kell

117

https://learning.postman.com/docs/getting-started/sending-the-first-request/#sending-a-request
https://learning.postman.com/docs/getting-started/sending-the-first-request/#sending-a-request
https://learning.postman.com/docs/sending-requests/visualizer/

megjelennie, illetve a kollekció változókezelő felületén az u1_allprods értékbe be kellett íródnia a
teljes válasz törzsnek.

 További segítség szkriptek írásához a dokumentációban.


Nem kötelező előzetesen felvenni a változókat, a set hívás hatására létrejön, ha
még nem létezik.

Egy termék részletes adatainak lekérdezése, változók felhasználása

A forgatókönyvünk szerint a felhasználó a termékek listájából kiválaszt egy terméket (a Tej nevűt).
Ezt a lépést szkriptből szimuláljuk, mint az [U1]GetTejDetails hívás előtt lefutó szkript. A hívás
előtt futó szkripteket a hívás Pre-request Script fülén lévő szövegdobozba írhatjuk:

const allProds = JSON.parse(pm.collectionVariables.get("u1_allprods"));
const tejid = allProds.find(({ name }) => name.startsWith('Tej')).id;
pm.collectionVariables.set("u1_tejid", tejid);

Tehát kiolvassuk az elmentett terméklistát, kikeressük a Tej nevű elemet, vesszük annak
azonosítóját, amit elmentünk az u1_tejid változóba. Ezt a változót már fel is használjuk a kérés
paramétereként: a Params fülön az id nevű URL paraméter (Path Variable) értéke legyen
{{u1_tejid}}

A kérés lefutása után mentsük el a válasz törzsét az u1_tej változóba. A Tests fülön lévő
szövegdobozba:

pm.collectionVariables.set("u1_tej", pm.response.text());


Ezt a fázist ki is lehetne hagyni, mert a listában már minden szükséges adat benne
volt a módosításhoz, de általánosságban gyakori, hogy egy részletes nézeten lehet
a módosítást elvégezni, ami a részletes adatok lekérdezésével jár.

Módosított termék mentése

Mielőtt a módosított terméket elküldenénk a szervernek, szimuláljuk magát a felhasználói
módosítást. Az [U1]UpdateTej hívás Pre-request Script-je legyen ez:

const tej = JSON.parse(pm.collectionVariables.get("u1_tej"));
tej.unitPrice++;
pm.collectionVariables.set("u1_tej_deluxe", JSON.stringify(tej));

Látható, hogy a módosított termékadatot egy új változóba (u1_tej_deluxe) mentjük. Ennél a hívásnál
is a Params fülön az id nevű URL paraméter (Path Variable) értéke legyen {{u1_tejid}}. Viszont itt
már a kérés törzsét is ki kell tölteni a módosított termékadattal. Mivel ez meg is van változóban, így
elég a Body fül szövegdobozába (Raw nézetben) csak ennyit beírni: {{u1_tej_deluxe}}.

118

https://learning.postman.com/docs/writing-scripts/intro-to-scripts/

Frissített terméklista lekérdezése, folyamat futtatása

Az utolsó folyamatlépésnél már nincs sok teendő, ha akarunk vizualizációt, akkor a Tests fül
szövegdobozába másoljuk át a fentebbi vizualizációs szkriptet.

Egy kéréssorozat futtatásához használható a Collection Runner funkció, ami a kollekció vagy egy
almappájának oldaláról (ami a kollekció/almappa kiválasztásakor jelenik meg) a jobb szélen a Save
melletti Run gombra nyomva hozható elő. A megjelenő ablak bal oldalán megjelennek a választott
kollekció/mappa alatti hívások, amiket szűrhetünk (a hívások előtti jelölődobozzal), illetve
sorrendezhetünk (a sor legelején lévő fogantyúval).

 További segítség kollekciók futtatásához a dokumentációban.

Az eddig elkészült folyamatunk futtatásához válasszuk ki az Update Tej mappát. Érdemes
beállítani a jobb részen a Save responses jelölőt, így a lefutás után megvizsgálhatjuk az egyes
kérésekre jött válaszokat.

Postman Runner konfigurálása egy felhasználó folyamatának futtatásához

Próbáljuk lefuttatni a folyamatot, a lefutás után a válaszokban ellenőrizzük a termékadatokat
(kattintsuk meg a hívást, majd a felugró ablakocskában válasszuk a Response Body részt),
különösen az utolsó hívás utánit - a tej árának meg kellett változnia az első híváshoz képest.

119

https://learning.postman.com/docs/collections/running-collections/intro-to-collection-runs/
https://learning.postman.com/docs/running-collections/intro-to-collection-runs/#running-your-collections
https://learning.postman.com/docs/running-collections/intro-to-collection-runs/#running-your-collections
https://learning.postman.com/docs/running-collections/intro-to-collection-runs/#running-your-collections

Postman Runner - egy felhasználó folyamatának lefutása

A második felhasználó folyamata

Az alábbi lépésekkel állítsuk elő a második felhasználó folyamatát:

• vegyünk fel minden u1 változó alapján új változót u2 névkezdettel

• duplikáljunk minden [U1] hívást, a klónok neve legyen ugyanaz, mint az eredetié, de kezdődjön
[U2]-vel

• a klónok minden szkriptjében, illetve paraméterében írjunk át minden u1-es változónevet u2
-esre

◦ az [U2]GetAllProductsBefore hívásban a Tests fülön egy helyen

◦ az [U2]GetTejDetails hívásban a Pre-request Script fülön két helyen, a Tests fülön egy
helyen, illetve a Params fülön egy helyen

◦ az [U2]UpdateTej hívásban a Pre-request Script fülön két helyen, a Body fülön egy helyen,
illetve a Params fülön egy helyen

• az [U2]UpdateTej hívás Pre-request Script módosító utasítását írjuk át a lenti kódra. A termék
nevét módosítjuk, nem az árát, a konkurenciahelyzetet ugyanis akkor is érzékelni kell, ha a két
felhasználó nem ugyanazt az adatmezőt módosítja (ugyanazon terméken belül).

tej.name = "Tej " + new Date().getTime();

120

Postman hívások - mindkét felhasználó folyamata

Ezzel elkészült a második felhasználó folyamata. Attól függően, hogy hogyan lapoltatjuk át a négy-
négy hívást, kapunk vagy nem kapunk 409-es válaszkódot futtatáskor. Az alábbi sorrend nem ad
hibát, hiszen a második felhasználó azután kéri le a terméket, hogy az első felhasználó már
módosított:

1. [U1]GetAllProductsBefore

2. [U2]GetAllProductsBefore

3. [U1]GetTejDetails

4. [U1]UpdateTej

5. [U1]GetAllProductsAfter

6. [U2]GetTejDetails

7. [U2]UpdateTej

8. [U2]GetAllProductsAfter

Az utolsó hívás után a tej ára és neve is megváltozott.

Az alábbi sorrend viszont hibát ad, hiszen a második felhasználó már elavult RowVersion-t fog
mentéskor elküldeni:

1. [U1]GetAllProductsBefore

2. [U2]GetAllProductsBefore

3. [U1]GetTejDetails

4. [U2]GetTejDetails

5. [U1]UpdateTej

6. [U1]GetAllProductsAfter

7. [U2]UpdateTej

121

8. [U2]GetAllProductsAfter

Postman Runner lefutás konkurenciahelyzettel


Érdemes megvizsgálni a 409-es hibakódú válasz törzsét és benne a változott mezők
eredeti és megváltozott értékét.



Ha igazi klienst írunk, figyeljünk arra, hogy a konkurenciatokent mindig küldjük le
a kliensnek, a kliens változatlanul küldje vissza a szerverre, és a szerver pedig a
módosítás során a klienstől kapott tokent szerepeltesse a módosítandó
entitásban. A legtöbb hibás implementáció arra vezethető vissza, hogy nem
követjük ezeket az elveket. Szerencsére az adatelérési kódunkban ezeknek a
problémáknak a nagy részét megoldja az EF.


Hívásokból álló folyamatokat nem csak Runnerben állíthatunk össze, hanem
szkriptből is. Ha épp ellenkezőleg, kevesebb szkriptelést szeretnénk, akkor a
Postman Flows ajánlott.

Az elkészült teljes Postman kollekció importálható erről a linkről az OpenAPI importáláshoz
hasonló módon. A kollekció szinten ne felejtsük el beállítani a baseUrl változót a
szerveralkalmazásunk alap URL-jére.

122

https://learning.postman.com/docs/running-collections/building-workflows/
https://learning.postman.com/docs/postman-flows/gs/flows-overview
https://raw.githubusercontent.com/bmeaut/WebApiLab/net6-client-megoldas/Postman/WebAPILab.postman_collection.json

Felhasználókezelés Azure B2C használatával

Kiegészítő anyagok, segédeszközök, előfeltételek
• Azure előfizetés szükséges (ingyenes is megfelelő), a lehetőségekről bővebben itt

Bevezetés
A felhasználókezelés az utóbbi években igen összetetté vált. Egy modern megoldásnak ma már
része az alábbiak közül számos képesség:

• email ellenőrzés regisztrációkor, email megerősítés bizonyos műveleteknél

• többfaktoros beléptetés (pl. mobil eszközzel)

• elfelejtett jelszó kezelése

• felhasználók letiltása

• botok kiszűrése (CAPTCHA)

• single sign-on

◦ egy szervezeten belül vagy

◦ külső identitások támogatása (Google, Facebook, Microsoft fiók)

• profil megtekintése, szerkesztése, törlése

◦ külső identitások kapcsolása, leválasztása

◦ GDPR funkciók: személyhez kapcsolódó adatok önkiszolgáló megtekintése, törlése

• adminisztrációs felület

◦ felhasználók megtekintése, letiltása, új jelszó generálási folyamat indítása

Ez a bonyolódás maga után vonta a kapcsolódó technológiák bonyolódását is. Megjelentek
különböző típusú alkalmazáskörnyezetekre (webes, mobil) különböző szabványos authorizációs
folyamatok (OAuth flow-k) és ezekre épülő kiterjesztések, például az OpenID.

.NET környezetben elérhetőek ezen szabványok implementációi, azonban a magasabb szintű
támogatás (pl. Visual Studio projektsablonok, generátorok, varázslók) többnyire az egyszerűbb
esetekre, a webes alkalmazásokra, azon belül is a szerver oldali rendereléssel dolgozókra (ASP.NET
Core MVC) korlátozódott. Az MVC-s Identity template süti alapú authentikációt használ. Szélesebb
körben (pl. mobilkliensek) használhatóak a token alapú (pl. JWT token), OAuth/OpenID megoldások,
így a továbbiakban csak erre koncentrálunk.

Token alapú felhasználókezelés

Tipikus az ilyen rendszerekben, hogy egy kitüntetett entitás az ún. identity
provider/authorization server tokeneket állít elő, amelyeket az alkalmazás, ahová a
kliensalkalmazás előtt ülő felhasználó be akar lépni (relying party, resource server) ellenőriz. A
felhasználó a kliensprogramján keresztül az azonosítás alatt kizárólag az identity provider-rel

123

https://www.aut.bme.hu/Course/felho#azuresub
https://medium.com/@darutk/diagrams-and-movies-of-all-the-oauth-2-0-flows-194f3c3ade85
https://openid.net/developers/specs/

kommunikál, neki adja meg a jelszavát például. Így tehát alapvetően három szereplő van: a
kliensprogram (egy böngésző is lehet), a relying party (RP/RS) és az identity provider (IDP/AS). Egy
IDP több RP-t is kiszolgálhat, így sokszor az IDP telepítési szempontból is egy külön komponens.

Ezen szabványokat implementálták a fejlettebb platformokra, így ASP.NET Core-ra is, tipikusan az
alábbi technológiákat/komponenseket alkalmazhatjuk:

• ASP.NET Core Identity (a Shared Framework része)

◦ adatelérési és üzleti logikai réteg a felhasználói adatok kezelésére

◦ JWT Bearer token middleware, ASP.NET Core authorizációs rendszer - RP feladatokhoz

• Identity UI - az Identity Core-hoz tartozó felület (ASP.NET Core Razor alapú)

• Duende IdentityServer (korábban IdentityServer) - 4-es főverzióig nyílt forráskódú IDP,
széleskörű támogatás tokenkezelési, IDP feladatokhoz. 5-ös verziótól kezdve licenszköteles, bár
sok esetben igényelhető ingyenes licensz.

• Duende IdentityServer Admin UI - adminisztrációs felület a Duende IdentityServer-hez

• Microsoft identity platform - komponensek Microsoft IDP szolgáltatások (Azure AD, Azure AD
B2C - lásd lentebb) igénybe vételéhez szerver- és kliensoldalhoz is. Nem önálló IDP megoldás,
önmagában nem használható. Az újgenerációs komponenskönyvtárak MSAL néven érhetőek el
különböző platformokra: MSAL.NET .NET-hez, MSAL.js JavaScript-hez, stb.

Látható, hogy maga a Microsoft alapvetően csak a tokenek ellenőrzésére (RP feladat) biztosít
magasszintű API-t, illetve komponenst ASP.NET Core-ban, tokenek előállítására nem (IDP feladat).
Ez utóbbira lehet jó a Duende IdentityServer, de ezen felül egyéb alternatívák is elérhetők.

Jelenleg (2022. tavasz) az ASP.NET Core projektsablonok a következő IDP technikákat használják:

• ASP.NET Core Web App: semmilyet, mert nem token, hanem süti alapú!

• ASP.NET Core Web API: Microsoft identity platform vagy on-premise Active Directory (ez utóbbi
lokális hálózaton működik)

• ASP.NET Core with Angular/React.js: Duende IdentityServer

Az IDP feladatok elég jól leválaszthatók, így megjelentek azok a szolgáltatások, melyek segítségével
gyakorlatilag minden IDP feladatot kiszervezhetünk, beleértve a fentebb felsorolt képességeket is.
Ezek az ún. IDentity as a Service (IDaaS) vagy Authentication as a Service szolgáltatások. Néhány
példa: Okta, Auth0 (2021. tavaszán felvásárolta az Okta), Azure AD B2C. Ezek alapvetően nem
ingyenes szolgáltatások, bár többnyire bizonyos méret/felhasználószám/tokenmennyiség alatt
ingyenesen használhatóak. További lehetőség saját üzemeltetésű, de külön telepíthető, kész IDP
telepítése. Ez lehet akár nem .NET-es is, hiszen a kommunikáció szabványokra (OAuth, OpenID
Connect) épül - ilyenre egy példa a keycloak. Ezen gyakorlat során az Azure AD B2C szolgáltatást
fogjuk használni, amivel az utolsó kivételével minden fenti komponenst kiváltunk.

A megvalósítandó rendszerben:

• az Azure B2C lesz az IDP/Authorization Server

• egy generált ASP.NET Core alkalmazás lesz a RP/Resource Server

◦ az alkalmazásból publikált webes API-t csak autentikált felhasználók érhetik el

124

https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://www.nuget.org/packages/Microsoft.AspNetCore.Identity.UI
https://duendesoftware.com/
https://github.com/skoruba/Duende.IdentityServer.Admin
https://learn.microsoft.com/en-us/azure/active-directory/develop/
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/community
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity-api-authorization
https://www.okta.com/
https://auth0.com/
https://www.keycloak.org/

◦ Microsoft identity platform komponenseket (MSAL.NET) használunk a B2C specifikus
feladatok megoldásához. Konkrétan a Microsoft.Identity.Web csomag biztosítja az ASP.NET
Core általános felhasználókezelés alrendszerének és az MSAL.NET-nek az összehangolását.

• egy szintén generált Blazor WebAssembly alkalmazást lesz a kliens, mely

◦ a felhasználókezelési folyamatok végrehajtásához a B2C által kiszolgált felületekre irányít át

◦ az ASP.NET Core alkalmazásunk API-ját hívja

◦ a Microsoft.Authentication.WebAssembly.Msal csomagot használunk a B2C specifikus
feladatok megoldásához. Ez a csomag egy .NET-es JavaScript interop réteget ad az MSAL.js
fölé.

• az OAuth Authorization Code Flow folyamatot fogjuk követni. A PKCE-vel (Proof Key for Code
Exchange) kiegészített változata az ajánlott flow szinte mindenfajta kliens (vastagkliens, web,
mobil) számára. SPA-k (angular, react, Blazor WebAssembly, stb.) számára gyakorlatilag csak ez
számít biztonságosnak.


Az Azure B2C-ben az első 50000 aktív felhasználó kiszolgálása ingyenes minden
hónapban.

Hosted WebAssembly alkalmazásból védett API hívása
Kövessük a hivatalos Microsoft útmutatót, itt csak az eltéréseket emeljük ki. A következő alcímek
megfelelnek az útmutató alcímeinek.

Előkészítés: Azure B2C Tenant létrehozása


Érdemes angolra állítani az Azure portál nyelvét, értelmesebb hibaüzeneteket
kaphatunk.

A RP regisztrálása Azure B2C-be

Bár még nincs meg az RP alkalmazásunkból semmi, a regisztrációját elkészítjük.

A kliensalkalmazás regisztrálása Azure B2C-be

Bár még nincs meg a kliensalkalmazásunkból sem semmi, a regisztrációját elkészítjük. Ha
szeretnénk a B2C tesztfelületéről tesztelni a felhasználókezeléses felületeket, akkor a szakasz végén
az implicit grant flowt is engedélyezzük az alkalmazás Authentication menüpontjában és ugyanitt
redirect URL-ként a https://jwt.ms címet is vegyük fel.


A jwt.ms oldalon dekódolhatjuk a JWT tokenjeinket, de az authorization code flow-
t redirect URI-ként nem támogatja.



Az implicit grant flowt csak azért engedélyezzük, hogy a jwt.ms oldalon történő
tesztelés majd működjön (lásd a következő szakasz), de ez már egy elavult
folyamat (ezért nincs is alapból engedélyezve) - csak tesztelési célból kapcsoljuk

125

https://github.com/AzureAD/microsoft-identity-web
https://github.com/AzureAD/microsoft-authentication-library-for-dotnet
https://github.com/AzureAD/microsoft-identity-web/wiki/Microsoft-Identity-Web-basics#high-level-architecture
https://www.nuget.org/packages/Microsoft.Authentication.WebAssembly.Msal
https://github.com/AzureAD/microsoft-authentication-library-for-js
https://learn.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-auth-code-flow#protocol-diagram
https://datatracker.ietf.org/doc/html/rfc7636
https://datatracker.ietf.org/doc/html/rfc7636
https://azure.microsoft.com/en-us/pricing/details/active-directory-b2c/
https://learn.microsoft.com/en-us/aspnet/core/blazor/security/webassembly/hosted-with-azure-active-directory-b2c?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/azure/azure-portal/set-preferences#change-language-and-regional-settings
https://learn.microsoft.com/en-us/azure/active-directory-b2c/tutorial-register-spa#enable-the-implicit-flow
https://jwt.ms
https://jwt.ms
https://learn.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-implicit-grant-flow#protocol-diagram

be.

User flow / policy létrehozása, kipróbálása

Egy kombinált regisztrációs-belépési folyamatot (Sign up and sign in) hozunk létre.

Ezeket az extra adatokat gyűjtsük be a felhasználókról (Collect attribute):

• keresztnév (Given name)

• vezetéknév (Surname)

• felhasználónév (Display Name)

Ezeket az extra adatokat kódoltassuk bele a tokenbe (Return claim):

• keresztnév (Given name)

• vezetéknév (Surname)

• felhasználónév (Display Name)

• email címek (Email addresses)

Ha korábban engedélyeztük az implicit flow-t, próbáljuk ki az új folyamatot a linkelt útmutató
alapján (Test the user flow alcím). Válasszuk ki a kliensalkalmazást tesztelendő alkalmazásként.
Regisztráljunk és lépjünk be. Ellenőrizzük a JWT dekóder oldalon a tokenbe kerülő claim-eket.

Derítsük fel a B2C Users oldalát. Ez egy adminisztratív felület, a regisztrált felhasználók adatait
látjuk, módosíthatjuk, valamint a jelszavukat is visszaállíthatjuk.

Kliens és szerver alkalmazás generálása

Ebben a fázisban a beépített .NET sablonok segítségével egy alapszinten működő, konfigurált
felhasználókezelést-hozzáférésszabályozást kapunk mind szerver-, mind kliensoldalon.


A -f parancssori kapcsolóval beállíthatjuk a projektek által használt .NET verziót,
például a 6-os verzióhoz használjuk a -f net6.0 kapcsolót.



Az Azure B2C kommunikáció szabványokra épül, így szinte bármilyen (nem csak
.NET alapú) klienstechnológiát használhatunk. Számos mintaprojekt elérhető
különböző technológiákhoz. Az MSAL komponens is számos fejlesztői platformra
elérhető. A legtöbb mintaprojektet próba B2C tenanttal is ki lehet próbálni,
ilyenkor nem is kell Azure előfizetés.

Az alkalmazás kipróbálása

A szakasz végén ki is próbálhatjuk az alábbiakat.

A /WeatherForecast címre hívva böngészőből 401-es hibát kapunk, míg ha az Authorize,
RequiredScope attribútumokat ideiglenesen levesszük a WeatherForecastController osztályról, akkor
visszakapjuk az adatokat.

126

https://learn.microsoft.com/en-us/azure/active-directory-b2c/tutorial-create-user-flows?pivots=b2c-user-flow
https://jwt.ms
https://learn.microsoft.com/en-us/azure/active-directory-b2c/code-samples
https://learn.microsoft.com/en-us/azure/active-directory/develop/msal-overview
https://github.com/Azure-Samples/active-directory-b2c-dotnet-desktop#using-the-demo-environment

A bal oldali Fetch Data és/vagy a jobb felső sarokban a Log in/Logout menüpontok segítségével
tesztelhetjük a főbb folyamatokat: regisztráció, belépés, kilépés. Próbáljuk ki, hogy belépés után
megjelennek-e az időjárásadatok.

Felhasználói adatok megfigyelése kliensoldalon

Az útmutatót követve Blazor projekt Pages mappájába vegyünk fel egy új Razor komponenst (Razor
component, nem Razor page!) User.razor névvel. Ebbe másoljuk bele a mintakomponens kódját.
Ezután a /User címre navigálva az access token adatait láthatjuk.

Egyéb Azure B2C funkciók

Felhasználó/csoport szintű hozzáférés-szabályozás

A felhasználókat tipikusan csoportokba soroljuk és az egyes csoportokra nézve osztjuk ki a
hozzáférést. Az Azure AD B2C nem rendelkezik csoportadminisztrációs képességgel, azonban a
kapcsolódó Azure AD-ba fel lehetne venni csoportokat, a felhasználók csoportba rendezhetnénk,
kivehetnénk stb. Ehhez egyrészt az Azure AD-ban is magas szintű jogok kellenének, másrészt saját
B2C-beli policy-t (nem ugyanaz, mint az ASP.NET Core authentikációs házirend) kellene
implementálni, amivel a tokenelőállítást tudnánk testre szabni, hogy az AD csoporttagság is
bekerüljön a tokenbe. Ez elég macerás, még úgy is, hogy van rá hivatalos példaimplementáció, ezért
egy jóval fapadosabb megoldást követünk.

Küldjük le a tokenben a felhasználó B2C-beli azonosítóját. A regisztrációs-belépési folyamat (User
flows) beállításai között az Application claims menüpontban jelöljük ki az User’s Object ID claim-et.
Mentsünk.

Vegyünk fel egy új házirendet a szerveroldal legfelső szintű kódjába úgy, hogy azt csak konkrét B2C-
beli azonosítóval rendelkező felhasználók teljesítsék. A már regisztrált felhasználók adatait, többek
között az Object ID-ját is megnézhetjük a B2C Users nevű oldalán, a kívánt felhasználót kiválasztva.
Válogassunk össze pár olyan Object ID-t, aminek a felhasználójának ismerjük a belépési adatait.

builder.Services.AddAuthorization(options=>
 options.AddPolicy("Admin", policy =>
 policy.RequireClaim(
 ClaimConstants.ObjectId
 //Vegyünk fel egy-két Object ID-t a regisztrált felhasználók közül
 , "00000000-0000-0000-0000-000000000000"
 , "00000000-0000-0000-0000-000000000000"))

);


Egyértelműen elegánsabb lenne, ha ez a csoporttagság konfigurációból vagy az
Azure B2C csoportkezelő funkciójából származna.

A fenti házirend szerint az teljesíti az Admin házirendet, akinek az Object ID-ja a felsoroltak közt
van - azaz a megadott értékek közül elég legalább egynek megfelelni a házirend teljesítéséhez.

127

https://learn.microsoft.com/en-us/aspnet/core/blazor/security/webassembly/hosted-with-azure-active-directory-b2c?view=aspnetcore-6.0#inspect-the-user
https://github.com/dotnet/aspnetcore/blob/v6.0.4/src/Components/WebAssembly/testassets/Wasm.Authentication.Client/Pages/User.razor
https://learn.microsoft.com/en-us/azure/active-directory-b2c/custom-policy-overview
https://github.com/azure-ad-b2c/samples/tree/master/policies/groups

Követeljük meg az új házirendet a kontrolleren.

[Authorize("Admin")] //házirend megadása


Műveleteken is elhelyezhetünk Authorize attribútumot. Minden elemre (kontroller,
művelet) nézve a lefutásának feltétele, hogy az összes szülőelemen megkövetelt
minden házirend teljesüljön.

A Blazor alkalmazásban lépjünk ki, majd be, végül próbáljuk ki az API hívást előbb egy az új
házirendben elvárt Object ID-val rendelkező felhasználóval, majd egy egyéb felhasználóval
(például egy újonnan regisztrálttal). Utóbbi esetben nem szabad eredményt kapnunk, de a
szerveralkalmazás konzolján naplózódik a kérés elutasítása (ha a naplózásunk elég részletes).


Az Object ID a tokenbe oid kulccsal kerül be és a felhasználót azonosítja. Hasonló,
bár nem teljesen azonos a sub kulcs, ami alkalmazás-felhasználó kombinációra
egyedi.

Elfelejtett jelszó funkció

Ezt egyszerűen csak be kell kattintani a regisztrációs folyamat beállításai között. Próbáljuk ki a
bejelentkező felületen a Forgot your password? link aktiválásával.

Social login

A B2C számos külső identitásszolgáltatóval (IDP) képes együttműködni, például Google, Twitter,
GitHub, Facebook stb. És persze Microsoft.

Az integrációhoz szükségünk lesz egy felhasználói/fejlesztői fiókra a kiválasztott
identitásszolgáltatónál. Az integrációhoz kövessük a hivatalos útmutatót, például a Microsoft
Account-ra (MSA) vonatkozót.



Az MSA integráció nehézsége, hogy első lépésben egy ún. Microsoft account
application-t kell létrehozni, de ehhez a B2C-s tenant nem jó, egyetemi, céges
tenantoknál pedig körülményes, mert a szükséges Azure AD felületeket gyakran
letiltják. Megoldás lehet, ha a privát MS fiókkal (@hotmail.com, @outlook.com)
lépünk be az Azure portálra és így a saját tenantunkban hozzuk létre az MS
account application-t.

Az integrációt követően a folyamatainkban felhasználhatjuk a külső IDP-t, ehhez a folyamat
beállításainál lévő Identity providers menüpontban válasszuk ki az adott folyamatban engedélyezni
kívánt IDP-ket. Ezután a regisztrációs, belépés felületeken megjelennek az engedélyezett IDP-khez
tartozó felület(elem)ek.

A kliensalkalmazás és a RP módosítására nincs szükség.

128

https://learn.microsoft.com/en-us/azure/active-directory/develop/access-tokens#payload-claims
https://learn.microsoft.com/en-us/azure/active-directory-b2c/add-password-reset-policy?pivots=b2c-user-flow#self-service-password-reset-recommended
https://learn.microsoft.com/hu-hu/azure/active-directory-b2c/active-directory-b2c-setup-msa-app
https://learn.microsoft.com/hu-hu/azure/active-directory-b2c/active-directory-b2c-setup-msa-app
https://learn.microsoft.com/en-us/azure/active-directory-b2c/identity-provider-microsoft-account?pivots=b2c-user-flow#create-a-microsoft-account-application
https://learn.microsoft.com/en-us/azure/active-directory-b2c/identity-provider-microsoft-account?pivots=b2c-user-flow#create-a-microsoft-account-application

Védett API hívása Postmanből
Hozzunk létre új HTTP kérést (HTTP Request) Postman-ben. A kérés legyen GET típusú, a cím
legyen egy azonosítást igénylő (védett) művelet címe. A generált projektben ilyen a
WeatherForecastController.Get() művelete, adjuk meg ennek a HTTPS címét, pl.:
https://localhost:5001/WeatherForecast

Próbáljuk meghívni elküldeni a kérést, 401-es hibakódot kell kapjunk a válaszban sikertelen
azonosítás miatt.

Vegyük fel az Azure portálon a kliensalkalmazáshoz a https://oauth.pstmn.io/v1/callback címet
redirect URI-ként.


Mivel az alkalmazásunk HTTPS címét használjuk, és ez a cím általában csak
fejlesztői tanúsítvánnyal rendelkezik, szükség lehet a tanúsítványellenőrzés
kikapcsolására Postman-ben.

A Postman kérés Authorization fülén a bal oldalt töltsük ki az alábbiak szerint:

• Type: OAuth 2.0

• Add Authorization data to: Request Headers

A jobb oldalt pedig az alábbiak szerint:

• Current token rész

◦ Access Token: ez majd a sikeres belépés után töltődik ki

◦ Header Prefix: Bearer

• Configure New Token - Configuration Options rész

◦ Token name: mi választjuk (pl. b2c), ezzel azonosítjuk a tokent a Postmanen belül

◦ Grant Type: Authorization Code (With PKCE)

◦ Callback URL: https://oauth.pstmn.io/v1/callback, illetve az Authorize using browser ne legyen
bepipálva. Ilyenkor a Postman saját böngészőablakot fog feldobni. Ha bepipáljuk, akkor az
alapértelmezett böngészőben fog elindulni a belépési folyamat.

◦ Auth URL: Az Azure portálon a kliensalkalmazás Overview menüpontjában felül nyomjuk
meg az Endpoints gombot. Jobb oldalon megjelennek a B2C IDP URL-jei. Ezek közül a Azure
AD B2C OAuth 2.0 authorization endpoint (v2) URL kell. Az URL-ben a <policy-name>
helyőrzőt le kell cserélnünk a belépési folyamat nevére. Példa:
https://myb2c.b2clogin.com/myb2c.onmicrosoft.com/b2c_1_susi/oauth2/v2.0/authorize

◦ Access Token URL: ugyanúgy szerezzük meg, mint az Auth URL-t, csak itt a Azure AD B2C
OAuth 2.0 token endpoint (v2) URL kell. A helyőrzőt itt is cserélni kell. Példa:
https://myb2c.b2clogin.com/myb2c.onmicrosoft.com/b2c_1_sg/oauth2/v2.0/token

◦ Client ID: a kliensalkalmazás Client ID-ja (amit a projektgeneráláskor --client-id-ként is
megadtunk)

◦ Client Secret: maradjon üres

129

https://learning.postman.com/docs/sending-requests/requests/#creating-requests
https://localhost:5001/WeatherForecast
https://learning.postman.com/docs/sending-requests/certificates/#troubleshooting-certificate-errors

◦ Code Challenge Method: SHA-256

◦ Code Verifier: maradjon üres

◦ Scope: az általunk felvett scope teljes scope URL-je (pl.
https://myb2c.onmicrosoft.com/00000000-0000-0000-0000-000000000000/API.Access). Az
Azure portálon a kliensalkalmazás API permission menüpontjában kattintsunk rá a scope
nevére. Jobb oldalon megjelenik az URL.

◦ State: maradjon üres

◦ Client Authentication: maradjon az előre beállított

Alul kérjük el a tokent a Get New Access Token gombbal. Egy böngészőablak fog megnyílni, az Azure
B2C belépési felülettel. Lépjünk be egy olyan felhasználóval, ami jogosult a védett művelet
meghívására. Miután beléptünk, a Postman ki tudja olvasni a tokent, ami bekerül a Current token
részre. Ezután küldjük újra a kérést. Most már sikerülnie kell, vissza kell kapnunk az
időjárásadatokat.

130

Automatizált tesztelés

Segédeszközök
• kapcsolódó GitHub repo: https://github.com/bmeaut/WebApiLab

◦ elég csak zip-ként letölteni a net6-test-init ágat, nem kell klónozni

Bevezetés
Az automatizált tesztelés az alkalmazásfejlesztés egyik fontos lépése, mivel ezzel tudunk
meggyőződni arról, hogy egy-egy funkció akkor is helyesen működik, ha az alkalmazás egy másik
részén valamit módosítunk. Hogy ezt az ellenőrzést ne kelljen minden egyes alkalommal
manuálisan végrehajtani az alkalmazáson, programozott teszteket szoktunk írni, amelyek
futtatását CI/CD folyamatokban automatizálhatjuk.

A tesztek több típusát ismerhetjük:

• Unit test (egységteszt) célja, hogy egy adott osztály egy metódusának a viselkedését önmagába
vizsgáljuk úgy, hogy a függőségeit mock/fake objektumokkal helyettesítjük, hogy azok a
tesztesetnek megfelelően viselkedjenek vagy megfigyelhetőek legyenek.

• Integrációs teszt / End-2-end teszt / funkcionális teszt esetében a célunk, hogy a teljes
rendszert meghajtsuk úgy, hogy az integrációk (SQL kapcsolat, egyéb szolgáltatások) is
tesztelésre kerülnek, illetve a BE szempontjából vizsgáljuk azt is, hogy a rendszer interfésze
helyesen válaszol-e a különböző kérésekre.

• UI teszt esetében azt vizsgáljuk, hogy a felhasználói felület a különböző felhasználói
interakciókra, eseményekre helyesen rajzolja-e ki az elvárt felületeket.

A fenti tesztelési módok mindegyike fontos, de érdemes egy olyan egészséges egyensúlyt
megtalálni, ahol a lehető legjobban lefedhetőek a legfontosabb funkcionalitások különböző
tesztesetekkel.

Automatizált tesztelés .NET környezetben
Automatizált tesztelésre több keretrendszer is használható .NET környezetben, de ASP.NET Core
alkalmazások esetében a legelterjedtebb ilyen könyvtár az xUnit. Ebben a keretrendszerben
lehetőségünk van tesztesetek definiálására, akár a bemenetek variálásával is, illetve kellően
rugalmas, ahhoz, hogy a tesztek feldolgozási mechanizmusa kiterjeszthető legyen.

Unit tesztek esetében az osztályok függőségeit le kell cseréljük, amire több library is lehetőséget
nyújt. A legelterjedtebbek a Moq és az NSubstitute.

Gyakran szükséges funkció, hogy a bemenő adatok előállítása során szeretnénk a valóságra
hasonlító véletlenszerű/generált példaadatokat megadni. Ehhez egy bevált osztálykönyvtár a
Bogus.

A tesztesetek elvárt eredményének a vizsgálatát asszertálásnak nevezzük (assert), aminek az

131

https://github.com/bmeaut/WebApiLab
https://github.com/bmeaut/WebApiLab/archive/refs/heads/net6-test-init.zip
https://learn.microsoft.com/en-us/dotnet/core/testing/unit-testing-best-practices#lets-speak-the-same-language
https://xunit.net/
https://github.com/moq
https://nsubstitute.github.io/
https://github.com/bchavez/Bogus

írásához nagy segítséget tud nyújtani a Fluent Assertions könyvtár. Ez nem csak a szintaktikát
teszi olvashatóbbá fluent szintakszissal, hanem több olyan beépített segédlogikát tartalmaz, amivel
tömörebbé tehető az assert logika (pl.: objektumok mélységi összehasonlítása érték szerint).

Integrációs tesztelés
Ezen gyakorlat keretében csak integrációs teszteket fogunk készíteni.

Teszt projekt

Vegyünk fel a solutionbe egy új xUnit (.NET 6) típusú projektet WebApiLab.Tests néven. A létrejövő
tesztosztályt és fájlját nevezzük át ProductControllerTests névre. Ide fogjuk a ProductControllerhez
kapcsolódó műveletekre vonatkozó integrációs teszteket készíteni.

Vegyük fel az alábbi NuGet csomagokat a teszt projektbe. A Bogusról és a Fluent Assertionsről már
volt szó. A Microsoft.AspNetCore.Mvc.Testing csomag olyan segédszolgáltatásokat nyújt, amivel
integrációs tesztekhez egy in-process teszt szervert tudunk futtatni, és ennek a meghívásában is

segítséget nyújt. A projektfájlban a többi PackageReference mellé (a projekten jobbklikk › Edit
Project File):

<PackageReference Include="Bogus" Version="34.0.2" />
<PackageReference Include="FluentAssertions" Version="6.6.0" />
<PackageReference Include="Microsoft.AspNetCore.Mvc.Testing" Version="6.0.4" />

Vegyük fel az Api projektet projekt referenciaként a teszt projektbe. A projektfájlban egy másik
ItemGroup mellé:

<ItemGroup>
 <ProjectReference Include="..\WebApiLab.Api\WebApiLab.Api.csproj" />
</ItemGroup>

Teszt szerver

A tesztszervernek meg kell tudnunk mondani, hogy melyik osztály adja az alkalmazásunk belépési
pontját. Viszont mivel top level statement szintaktikájú a Program osztályunk, annak láthatósága
internal, ami a tesztelés szempontjából nem szerencsés (a hasonló esetekben alkalmazott
InternalsVisibleTo sem lenne ebben az esetben megoldás). Helyette tegyük a Program osztályt
publikussá egy partial deklarációval. Vegyük fel az alábbi partial kiegészítést az API projektben a
legfelső szintű kód végére:

public partial class Program { }

Az integrációs tesztünkhöz az in-process teszt szervert egy WebApplicationFactory<TEntryPoint>
leszármazott osztály fogja létrehozni. Ez a segéd ősosztály a fenti Microsoft.AspNetCore.Mvc.Testing
csomagból jön. Itt lehetőségünk van a teszt szerverünket konfigurálni, így akár a DI konfigurációt

132

https://fluentassertions.com
https://stackoverflow.com/a/69483450/1406798

is.

Hozzunk létre egy osztályt a teszt projektbe CustomWebApplicationFactory néven, ami származzon a
WebApplicationFactory<Program> osztályból és definiáljuk felül a CreateHost metódusát.

public class CustomWebApplicationFactory : WebApplicationFactory<Program>
{
 protected override IHost CreateHost(IHostBuilder builder)
 {
 builder.UseEnvironment("Development");
 builder.ConfigureServices(services =>
 {
 services.AddScoped(sp => new DbContextOptionsBuilder<AppDbContext>()
 .UseSqlServer(@"connection string")
 .UseApplicationServiceProvider(sp)
 .Options);
 });

 var host = base.CreateHost(builder);

 using var scope = host.Services.CreateScope();
 scope.ServiceProvider.GetRequiredService<AppDbContext>()
 .Database.EnsureCreated();

 return host;
 }
}

Megfigyelhetjük, hogy itt is LocalDB-t használunk (mivel integrációs teszt), de a connection stringet
lecseréjük a DI konfigurációban. A connection string alapvetően egyezhet a tesztelendő projektben
használttal, csak az adatbázisnevet változtassuk meg. Az adatbázis automatikusan létrejön és a
migrációk is lefutnak az EnsureCreated meghívásával - az első lefutáskor.


Mivel az AppDbContext Scoped életciklussal van regisztrálva a DI-ba, szükséges
létrehozni egy scope-ot, hogy el tudjuk kérni a DI konténertől. Ezt természetesen
ha HTTP kérés közben lennénk az ASP.NET Core automatikusan megtenné.

Kontrollertesztek előkészítése

Alakítsuk át a ProductControllerTests osztályt. Az osztály valósítsa meg az
IClassFixture<CustomWebApplicationFactory> interfészt, amivel azt tudjuk jelezni az xUnit-nak, hogy
kezelje a CustomWebApplicationFactory életciklusát (tesztek között megosztott objektum lesz), illetve
pluszban lehetőségünk van ezt a tesztosztályokban konstruktoron keresztül elkérni.

public partial class ProductControllerTests : IClassFixture
<CustomWebApplicationFactory>
{
 private readonly WebApplicationFactory<Program> _appFactory;

133

https://xunit.net/docs/shared-context#class-fixture

 public ProductControllerTests(CustomWebApplicationFactory appFactory)
 {
 _appFactory = appFactory;
 }
}



Az xUnit nem tartalmaz DI konténert. Csak azok a konstruktorparaméterek
töltődnek ki, amelyek a dokumentációban megtalálhatók. A
CustomWebApplicationFactory típusú paraméter azért töltődik ki, mert az osztály az
interfészében jelzi, hogy megosztott kontextusként CustomWebApplicationFactory-t
vár.

Hozzunk létre a Bogus könyvtárral egy olyan Faker<Product> objektumot, amivel az API-nak
küldendő DTO objektum generálását végezzük el. Azonosítóként küldjünk 0 értéket, mivel a
létrehozás műveletet fogjuk tesztelni, kategória esetében pedig az 1-et, mivel a migráció által
létrehozott 1-es kategóriát fogjuk tudni csak használni. A többi esetben használjuk a Bogus beépített
lehetőségeit a név és a szám értékek random generálásához.

// ...
 private readonly Faker<Product> _dtoFaker;

/**/public ProductControllerTests(CustomWebApplicationFactory appFactory)
/**/{
 // ...
 _dtoFaker = new Faker<Product>()
 .RuleFor(p => p.Id, 0)
 .RuleFor(p => p.Name, f => f.Commerce.Product())
 .RuleFor(p => p.UnitPrice, f => f.Random.Int(200, 20000))
 .RuleFor(p => p.ShipmentRegion,
 f => f.PickRandom<Dal.Entities.ShipmentRegion>())
 .RuleFor(p => p.CategoryId, 1)
 .RuleFor(p => p.RowVersion, f => f.Random.Bytes(5));
/**/}

A kliensoldali JSON sorosítást a szerveroldallal kompatibilisen kell megtegyük. Ehhez készítsünk
egy JsonSerializerOptions objektumot, amibe beállítjuk, hogy a felsorolt típusokat szöveges
értékként kezelje. Mivel ugyanazt a példányt akarjuk használni a tesztekben, ezért a példányt a
CustomWebApplicationFactory (mint tesztek közötti megosztott objektum) készítse el és ajánlja ki.

public JsonSerializerOptions SerializerOptions { get; }

public CustomWebApplicationFactory()
{
 JsonSerializerOptions jso = new(JsonSerializerDefaults.Web);
 jso.Converters.Add(new JsonStringEnumConverter());
 SerializerOptions= jso;

134

}

A ProductControllerTests a kiajánlott JsonSerializerOptions-t vegye át.

// ...
private readonly JsonSerializerOptions _serializerOptions;

public ProductControllerTests(CustomWebApplicationFactory appFactory)
{
 // ...
 _serializerOptions = appFactory.SerializerOptions;
}



Sajnos ezt a JsonSerializerOptions példányt minden sorosítást igénylő műveletnél
majd át kell adnunk, mivel az alapértelmezett JSON sorosítónak nincs publikusan
elérhető API-ja alapértelmezett sorosítási beállítások megadásához. Ugyanakkor
fontos, hogy kerüljük a JsonSerializerOptions felesleges példányosítását.
Ugyanolyan beállításokat igénylő műveletek lehetőleg ugyanazt a példányt
használják. Ezt most az XUnit megosztott kontextusával oldottuk meg.

POST művelet alapműködés tesztelése

Készítsük el az első tesztünket a ProductController Post műveletéhez. Érdemes azt az
osztálystruktúrát követni, hogy minden művelethez / függvényhez külön teszt osztályokat hozunk
létre, ami akár több tesztesetet is tartalmazhat. Ez a teszt osztályt beágyazott osztályként (Post)
hozzuk létre egy külön partial fájlban (ProductIntegrationTests.Post.cs) a nagyobb egységhez
tartozó tesztosztályon belül. Ezzel szépen strukturáltan tudjuk tartani a Test Explorerben (lásd
később) is a teszteseteinket. Pluszban még származtassuk le a tartalmazó osztályból, hogy a
tesztesetek elérhessék a fentebb létrehozott osztályváltozókat.


Érdekesség, hogy nem kell protected láthatóságúaknak lenniük a fenti
osztályváltozóknak, ha beágyazott osztály akarja elérni azokat.

/**/public partial class ProductControllerTests
/**/{
 //...
 public class Post : ProductControllerTests
 {
 public Post(CustomWebApplicationFactory appFactory)
 : base(appFactory)
 {
 }
 }
/**/}

A tesztesetek a teszt osztályban metódusok fogják reprezentálni, amelyek [Fact] vagy [Theory]

135

https://github.com/dotnet/runtime/issues/31094
https://github.com/dotnet/runtime/issues/31094
https://learn.microsoft.com/en-us/dotnet/standard/serialization/system-text-json/configure-options?pivots=dotnet-6-0#reuse-jsonserializeroptions-instances

attribútummal rendelkeznek. A fő különbég az, hogy a Fact egy statikus tesztesetet reprezentál, míg
a Theory bemenő paraméterekkel rendelkezhet.

Elsőként az egyenes ágat teszteljük le, hogy a beszúrás helyesen lefut-e, és a megfelelő HTTP
válaszkódot, a location HTTP fejlécet, és válasz DTO-t adja-e vissza. Hozzunk létre egy függvényt
Fact attribútummal Should_Succeded_With_Created néven.

A teszteset az AAA (Arrange, Act, Assert) mintát követi, ahol 3 részre tagoljuk magát a tesztesetet. Az
Arrange fázisban előkészítjük a teszteset körülményeit. Az Act fázisban elvégezzük a tesztelendő
műveletet. Az Assert fázisban pedig megvizsgáljuk a végrehajtott művelet eredményeit,
mellékhatásait.

[Fact]
public async Task Should_Succeded_With_Created()
{
 // Arrange

 // Act

 // Assert
}

Az Arrage-ben kérjünk el egy a teszt szerverhez kapcsolódó HttpClient objektumot, illetve hozzunk
létre egy felküldendő DTO-t.

// Arrange
var client = _appFactory.CreateClient();
var dto = _dtoFaker.Generate();

Az Act fázisban küldjünk el egy POST kérést a megfelelő végpontra a megfelelő sorosítási
beállításokkal és olvassuk ki a választ.

// Act
var response = await client.PostAsJsonAsync("/api/products", dto, _serializerOptions);
var p = await response.Content.ReadFromJsonAsync<Product>(_serializerOptions);

Az Assert fázisban pedig fogalmazzuk meg a FluentValidation könyvtár segítségével az elvárt
eredmény szabályait. Gondoljunk arra is, hogy a Category, Order, Id és RowVersion property-k
esetében nem az az elvárt válasz, amit felküldünk a szerverre, ezért ezeket szűrjük le az
összehasonlításból és vizsgáljuk őket külön szabállyal.

// Assert
response.StatusCode.Should().Be(HttpStatusCode.Created);
response.Headers.Location
 .Should().Be(
 new Uri(_appFactory.Server.BaseAddress, $"/api/Products/{p.Id}")

136

https://learn.microsoft.com/en-us/visualstudio/test/unit-test-basics?view=vs-2022#write-your-tests

);

p.Should().BeEquivalentTo(
 dto,
 opt => opt.Excluding(x => x.Category)
 .Excluding(x => x.Orders)
 .Excluding(x => x.Id)
 .Excluding(x => x.RowVersion));
p.Category.Should().NotBeNull();
p.Category.Id.Should().Be(dto.CategoryId);
p.Orders.Should().BeEmpty();
p.Id.Should().BeGreaterThan(0);
p.RowVersion.Should().NotBeEmpty();


A Fluent Assertions jelenleg még nem működik együtt a nem nullozható referencia
típusokkal kapcsolatos ellenőrzési logikákkal, így az Assert részen kaphatunk
ennek kapcsán figyelmeztetéseket Should().NotBeNull() hívások után is.

A POST művelet megváltoztatná az adatbázis állapotát, amit célszerű lenne elkerülni. Ezt
legegyszerűbben úgy érhetjük el, hogy nyitunk egy tranzakciót a tesztben, amit nem commitolunk a
teszt lefutása során. Ehhez vegyük fel az alábbi utasításokat az Arrange fázisban.

 // Arrange
 _appFactory.Server.PreserveExecutionContext = true;
 using var tran = new TransactionScope(TransactionScopeAsyncFlowOption.Enabled);

/**/var client = _appFactory.CreateClient();
/**/var dto = _dtoFaker.Generate();

Tranzakciót a .NET TransactionScope osztállyal fogunk most nyitni, amin engedélyezzük az
aszinkron támogatást is. Ahhoz pedig, hogy a tesztben létrehozott tranzakció érvényre jusson a
teszt szerveren is, a PreserveExecutionContext tulajdonságot be kell kapcsoljuk.

Próbáljuk ki a Test › Run All Test menüpont segítségével. A Test Explorerben figyeljük meg az
eredményt.

POST művelet hibaág tesztelése

Készítsünk egy tesztesetet, ami a hibás terméknév ágat teszteli le. Mivel ez két esetet is magában
foglal (null, üres string), használjunk paraméterezhető tesztesetet, tehát Theory-t. A teszteset
bemenő paramétereit többféleképpen is meg lehet adni. Mi most válasszuk az InlineData
megközelítést, ahol attribútumokkal a teszteset fölött közvetlenül megadhatóak a bemenő
paraméter értékei. Ilyen esetben az attribútumban megadott értékeket a teszt metódus
paraméterlistáján kell elkérjük. Esetünkben a név hibás értékeit várjuk első paraméterként,
második paraméterként pedig az elvárt hibaüzenetet.

[Theory]

137

https://github.com/fluentassertions/fluentassertions/issues/1115
https://learn.microsoft.com/en-us/visualstudio/test/run-unit-tests-with-test-explorer?view=vs-2022#run-tests-in-test-explorer

[InlineData("", "Product name is required.")]
[InlineData(null, "Product name is required.")]
public async Task Should_Fail_When_Name_Is_Invalid(string name, string expectedError)
{
 // Arrange

 // Act

 // Assert
}

Az előző tesztesethez hasonlóan hozzunk létre a teszt szervert és a DTO-t, de most a nevet a
paraméter alapján töltsük fel. Bár elvileg nem lenne szükséges tranzakciókezelés, hiszen nem
szabadna adatbázis módosításnak történnie, a biztonság kedvéért implementáljuk itt is a
tranzakciókezelést.

// Arrange
 _appFactory.Server.PreserveExecutionContext = true;
using var tran = new TransactionScope(TransactionScopeAsyncFlowOption.Enabled);
var client = _appFactory.CreateClient();
var dto = _dtoFaker.RuleFor(x => x.Name, name).Generate();

Az Act fázisban annyi a különbség, hogy most ValidationProblemDetails objektumot várunk a
válaszban.

// Act
var response = await client.PostAsJsonAsync("/api/products", dto, _serializerOptions);
var p = await response.Content
 .ReadFromJsonAsync<ValidationProblemDetails>(_serializerOptions);

Az Assert fázisban pedig a HTTP státuszkódot és a ProblemDetails tartalmára vizsgáljunk.

// Assert
response.StatusCode.Should().Be(HttpStatusCode.BadRequest);

p.Status.Should().Be(400);
p.Errors.Should().HaveCount(1);
p.Errors.Should().ContainKey(nameof(Product.Name));
p.Errors[nameof(Product.Name)].Should().ContainSingle(expectedError);

Próbáljuk ki a Test › Run All Test menüpont segítségével. Figyeljük meg a tesztek hierarchiáját is, a
POST művelethez kapcsolódó tesztek egy csoportba lettek összefogva.


Észrevehetjük, hogy a tranzakciókezeléssel kapcsolatos kódot duplikáltuk, ennek
elkerülésére például például tesztfüggvényre tehető attribútumot vezethetünk be.

138

https://github.com/xunit/samples.xunit/blob/main/AutoRollbackExample/AutoRollbackAttribute.cs

Naplózás
A tesztek üzeneteket naplózhatnak egy speciális tesztkimenetre. Ehhez minden tesztosztály példány
kap(hat) egy saját ITestOutputHelper példányt a konstruktoron keresztül. Vezessük be az új
konstruktorparamétert a tesztosztályban és az ősosztályában is.

 private readonly ITestOutputHelper _testOutput;

/**/public ProductControllerTests(CustomWebApplicationFactory appFactory
 , ITestOutputHelper output)
/**/{
 //...
 _testOutput = output;
/**/}

//... Post beágyazott típus konstruktora

/**/public Post(CustomWebApplicationFactory appFactory
 , ITestOutputHelper output)
 : base(appFactory, output) //plusz paraméter átadása
/**/{ }

Próbaképp írjunk ki egy üzenetet a ProductControllerTests konstruktorában.

/**/_testOutput = output;
 output.WriteLine("ProductControllerTests ctor");

Ellenőrizzük, hogy a tesztek lefuttatása után Test Explorer-ben megjelennek-e az üzenetek a Test
Detail Summary ablakrész Standard output szekciójában. Ebből láthatjuk, hogy minden
tesztfüggvény, sőt minden tesztfüggvény változat (a Theory minden bemeneti adatsora egy külön
változat) meghívásakor lefut a konstruktor.

Ugyanerre a kimenetre kössük rá a szerveroldali naplózást, hogy a tesztek lefutása mellett ezek a
naplóüzenetek is megjelenjenek. Ehhez telepítsünk egy segédcsomagot a tesztprojektbe.

<PackageReference Include="MartinCostello.Logging.XUnit" Version="0.3.0" />

A ProductControllerTests konstruktorában kössük össze a két paramétert, a
CustomWebApplicationFactory és az ITestOutputHelper példányt a fenti segédcsomag (AddXUnit
metódus) segítségével. A tesztszerver naplózó alrendszerének adjuk meg kimenetként az xUnit
tesztkimenetét.

/**/_appFactory = appFactory
 .WithWebHostBuilder(builder =>
 {
 builder.ConfigureLogging(logging =>

139

https://learn.microsoft.com/en-us/visualstudio/test/run-unit-tests-with-test-explorer?view=vs-2022#view-test-details
https://learn.microsoft.com/en-us/visualstudio/test/run-unit-tests-with-test-explorer?view=vs-2022#view-test-details

 {
 logging.ClearProviders();
 logging.AddXUnit(output);
 });
 });

Ellenőrizzük, hogy a tesztek lefuttatása után Test Explorer-ben megjelennek-e a szerveroldali
üzenetek is.

A végállapot elérhető a kapcsolódó GitHub repo net6-test-megoldas ágán.

140

https://github.com/bmeaut/WebApiLab/tree/net6-test-megoldas

	ASP.NET Core 6 gyakorlatok
	
	Előszó
	A jegyzet célja és célközönsége
	A jegyzet naprakészsége
	Szoftverkörnyezet
	Kódrészletek változáskövetése

	C# alapok, szintaxis
	Célkitűzés
	Hello C#!
	Debug
	Tulajdonságok (Property-k)
	Generikus kollekció
	Leszármazás, string interpoláció
	Objektum inicializálók
	Kollekció inicializáció

	C# alapok II.
	Előkészítés
	Implicit típusdeklaráció
	Init-only setter
	Indexer operátor, nameof operátor, index inicializáló
	Using static
	Nullozható típusok
	Rekord típus

	LINQ
	Előkészítés
	Lambda kifejezések, delegátok
	Func<>, Action<>
	IEnumerable<T> bővítő metódusok
	Gyakori lekérdező műveletek, yield return
	Anonim típusok
	LINQ szintaxisok
	Kitekintő: Expression<>, LINQ providerek

	C# alapok IV.
	Bejárási problémák
	Aszinkron működés
	Nem(igazán) nullozható referencia típusok
	Tuple nyelvi szinten, lokális függvények, Dispose minta

	Entity Framework Core I-II.
	Az Entity Framework leképezési módszerei
	A Code-First leképezési módszer
	Kapcsolat az adatbázissal
	Sémamódosítás
	Adatbázis naplózás
	Beszúrás
	Ősfeltöltés (seeding) elvárt adattartalom megadásával
	Lekérdezések
	Beszúrás több-többes kapcsolatba
	Kapcsolódó entitások betöltése
	Több-többes kapcsolat közvetlen navigálása
	Módosítás, Find
	Törlés
	Felsorolt típus, értékkonvertálók
	Tranzakciók

	ASP.NET Core alapszolgáltatások
	Projekt létrehozása
	Végrehajtási pipeline, middleware-ek
	Hosztolási lehetőségek a fejlesztői gépen
	Alkalmazásbeállítások vs. indítási profilok
	Web API
	Típusos beállítások, IOptions<T>
	User Secrets
	Epilógus - WebApplicationBuilder

	ASP.NET Core webszolgáltatások I.-II.
	Kiegészítő anyagok, segédeszközök
	Kiinduló projektek beüzemelése
	Az EF bekötése az ASP.NET Core DI, naplózó, konfiguráló rendszereibe
	EF entitások használata az API felületen
	Köztes réteg alkalmazása
	DTO osztályok
	BLL funkciók implementációja
	REST konvenciók alkalmazása
	Hibakezelés
	Aszinkron műveletek
	Végállapot

	ASP.NET Core webszolgáltatások III.
	Kiegészítő anyagok, segédeszközök
	Kiinduló projektek beüzemelése
	Egyszerű kliens
	OpenAPI/Swagger szerveroldal
	OpenAPI/Swagger kliensoldal
	Hibakezelés II.
	Postman használata

	Felhasználókezelés Azure B2C használatával
	Kiegészítő anyagok, segédeszközök, előfeltételek
	Bevezetés
	Hosted WebAssembly alkalmazásból védett API hívása
	Egyéb Azure B2C funkciók
	Védett API hívása Postmanből

	Automatizált tesztelés
	Segédeszközök
	Bevezetés
	Automatizált tesztelés .NET környezetben
	Integrációs tesztelés
	Naplózás

